• Title/Summary/Keyword: bias modulator

Search Result 35, Processing Time 0.025 seconds

3-Level Envelope Delta-Sigma Modulation RF Signal Generator for High-Efficiency Transmitters

  • Seo, Yongho;Cho, Youngkyun;Choi, Seong Gon;Kim, Changwan
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.924-930
    • /
    • 2014
  • This paper presents a $0.13{\mu}m$ CMOS 3-level envelope delta-sigma modulation (EDSM) RF signal generator, which synthesizes a 2.6 GHz-centered fully symmetrical 3-level EDSM signal for high-efficiency power amplifier architectures. It consists of an I-Q phase modulator, a Class B wideband buffer, an up-conversion mixer, a D2S, and a Class AB wideband drive amplifier. To preserve fast phase transition in the 3-state envelope level, the wideband buffer has an RLC load and the driver amplifier uses a second-order BPF as its load to provide enough bandwidth. To achieve an accurate 3-state envelope level in the up-mixer output, the LO bias level is optimized. The I-Q phase modulator adopts a modified quadrature passive mixer topology and mitigates the I-Q crosstalk problem using a 50% duty cycle in LO clocks. The fabricated chip provides an average output power of -1.5 dBm and an error vector magnitude (EVM) of 3.89% for 3GPP LTE 64 QAM input signals with a channel bandwidth of 10/20 MHz, as well as consuming 60 mW for both channels from a 1.2 V/2.5 V supply voltage.

Design of an Advanced CMOS Power Amplifier

  • Kim, Bumman;Park, Byungjoon;Jin, Sangsu
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.63-75
    • /
    • 2015
  • The CMOS power amplifier (PA) is a promising solution for highly-integrated transmitters in a single chip. However, the implementation of PAs using the CMOS process is a major challenge because of the inferior characteristics of CMOS devices. This paper focuses on improvements to the efficiency and linearity of CMOS PAs for modern wireless communication systems incorporating high peak-to-average ratio signals. Additionally, an envelope tracking supply modulator is applied to the CMOS PA for further performance improvement. The first approach is enhancing the efficiency by waveform engineering. In the second approach, linearization using adaptive bias circuit and harmonic control for wideband signals is performed. In the third approach, a CMOS PA with dynamic auxiliary circuits is employed in an optimized envelope tracking (ET) operation. Using the proposed techniques, a fully integrated CMOS ET PA achieves competitive performance, suitable for employment in a real system.

Intermodulation Distortion in Multiple Quantum-Well Electroabsorption Modulator (다중 양자 우물 구조의 전계 흡수 변조기의 혼변조 왜곡 특성)

  • Yun Youngseol;Choi Young-Wan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.6
    • /
    • pp.293-297
    • /
    • 2005
  • Linearity is an important property of optical devices for analog communications. In this paper, we study the 3rd-order interrnodulation distortion (IMD3) of an Inp/InGaAsP multiple-quantum-well (MQW) traveling-wave type electroabsorption modulator (TW-EAM). We observe abnormal notches in the IMD3 results those were different from notches by general transfer curve of electroabsorption modulators (EAMs). We analyze the phenomena through absorption coefficients according to wavelengths and bias voltages to verify appearance of the abnormal notchs, where it can be known to result from Stark-shift and broadening. We propose the method to enhance linearity of MQW-EAMs by using these effects.

A Single-Bit 2nd-Order CIFF Delta-Sigma Modulator for Precision Measurement of Battery Current (배터리 전류의 정밀 측정을 위한 단일 비트 2차 CIFF 구조 델타 시그마 모듈레이터)

  • Bae, Gi-Gyeong;Cheon, Ji-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.184-196
    • /
    • 2020
  • In this paper, a single-bit 2nd-order delta-sigma modulator with the architecture of cascaded-of-integrator feedforward (CIFF) is proposed for precision measurement of current flowing through a secondary cell battery in a battery management system (BMS). The proposed modulator implements two switched capacitor integrators and a single-bit comparator with peripheral circuits such as a non-overlapping clock generator and a bias circuit. The proposed structure is designed to be applied to low-side current sensing method with low common mode input voltage. Using the low-side current measurement method has the advantage of reducing the burden on the circuit design. In addition, the ±30mV input voltage is resolved by the ADC with 15-bit resolution, eliminating the need for an additional programmable gain amplifier (PGA). The proposed a single-bit 2nd-order delta-sigma modulator has been implemented in a 350-nm CMOS process. It achieves 95.46-dB signal-to-noise-and-distortion ratio (SNDR), 96.01-dB spurious-free dynamic range (SFDR), and 15.56-bit effective-number-of-bits (ENOB) with an oversampling ratio (OSR) of 400 for 5-kHz bandwidth. The area and power consumption of the delta-sigma modulator are 670×490 ㎛2 and 414 ㎼, respectively.

Attenuator using Lossy Left-Handed Transmission Line and Vector Modulator Application (손실이 있는 Left-Handed 전송선로를 이용한 감쇠기와 벡터 변조기 응용)

  • Kim, Seung-Hwan;Kim, Ell-Kou;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.399-405
    • /
    • 2009
  • This paper proposes a design of attenuator based on meta-material structure and its application. The unit-cell attenuator based on the lossy transmission line consists of the CRLH(Composite Right/Left Handed) transmission line and PIN diodes to be controlled internal loss according to diode bias voltage to change resistance of diode. Also, to reduce the initial losses, there is used parallel connection of PIN diodes. To increase attenuations, it is connected a cascade unit-cell of attenuator with periodic structure. The attenuation quantities of unit-cell are about 10dB and phase variations are 15o maximum at 1.5 GHz ~ 2.5 GHz. Also, its application is represented a vector modulator.

  • PDF

Design and Fabrication of a High-Power Pulsed TWTA for Millimeter-Wave(Ka-Band) Multi-Mode Seeker (밀리미터파(Ka 밴드) 복합모드 탐색기용 고출력 펄스형 진행파관 증폭기(TWTA) 설계 및 제작)

  • Song, Sung-Chan;Kim, Sun-Ki;Lee, Sung-Wook;Min, Seong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.307-313
    • /
    • 2019
  • The traveling wave tube amplifier (TWTA), which can be applied to the Ka-band millimeter-wave multi-mode seeker, consists of an high voltage power supply(HVPS), a grid modulator, a command and control, and an RF assembly. We designed a power supply that generates a -17.9 kV high voltage by synchronizing the pulse repetition frequency(PRF) and power supply switching frequency(i.e. synchronization frequency), and a high-speed grid-switching modulator for RF pulse modulation. The TWTA, which is fabricated through miniaturization with a volume of 3.18 L, has high pulse switching characteristics of up to 18.5 ns. The maximum rise/fall time of the grid on/bias signal and peak power is more than 564.9 W. Moreover, an excellent spurious performance of -68.4 dBc or less was confirmed within the range of PRF and PRF/2.

A Study on the Detection Algorithm of an Advanced Ultrasonic Signal for Hydro-acoustic Releaser

  • Kim, Young-Jin;Huh, Kyung-Moo;Cho, Young-June
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.767-775
    • /
    • 2008
  • Methods used for exploring marine resources and spaces include positioning a probe under water and then recalling it after a specified time. Hydro-acoustic Releasers are commonly used for positioning and retrieving of such exploration equipment. The most important factor in this kind of system is the reliability for recalling the instruments. The frequently used ultrasonic signal detection method can detect ultrasonic signals using a fixed comparator, but because of increased rates of errors due to outside interferences, information is repetitively acquired. This study presents an effective ultrasonic signal detection algorithm using the characteristics of a resonance and adaptive comparator Combined with the FSK+ASK modulator. As a result, approximately 8.8% of ultrasonic wave communication errors caused by background noise and transmission losses were reduced for effectively detecting ultrasonic waves. Furthermore, the resonance circuit's quality factor was enhanced (Q = 120 to 160). As such, the bias voltage of the transistor (Vb= 3.3 to 6.8V) was increased thereby enhancing the frequency's selectivity.

Amplitude Control of Phase Modulation for Dithered Closed-loop Fiber Optic Gyroscope

  • Chong, Kyoung-Ho;Chong, Kil-To;Kim, Young-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.401-408
    • /
    • 2012
  • The amplitude error of phase modulator used in closed-loop fiber optic gyroscope has occurred by the temperature dependency of the electro-optic coefficient, and also can be due to the square-wave dither signal which is generally applied for eliminating the deadzone. This error can cause bias drift and scale factor error. This paper analyzes the temperature dependency of the modulation amplitude and the relationship with the scale factor of the gyroscope, and deals with an amplitude control method. The error calculation logic considering the dither signal is implemented on the signal processing module. The result of experiments from a prototype gyroscope shows the effect of the modulation amplitude control and a considerable improvement on performances.

Optical Triangular Waveform Generation with Alterable Symmetry Index Based on a Cascaded SD-MZM and Polarization Beam Splitter-combiner Architecture

  • Dun Sheng Shang;Guang Fu Bai;Jian Tang;Yan Ling Tang;Guang Xin Wang;Nian Xie
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.574-581
    • /
    • 2023
  • A scheme is proposed to generate triangular waveforms with alterable symmetry. The key component is a cascaded single-drive Mach-Zehnder modulator (SD-MZM) and optical polarization beam splitter-combiner architecture. In this triangular waveform generator, the bias-induced phase shift, modulation index and controllable delay difference are changeable. To generate triangular waveform signals with different symmetry indexes, different combinations of these variables are selected. Compared with the previous schemes, this generator just contains one SD-MZM and the balanced photodetector (BPD) is not needed, which means the costs and energy consumption are significantly reduced. The operation principle of this triangular waveform generator has been theoretically analyzed, and the corresponding simulation is conducted. Based on the theoretical and simulated results, some experiments are demonstrated to prove the validity of the scheme. The triangular waveform signals with a symmetry factor range of 20-80% are generated. Both experiment and theory prove the feasibility of this method.

Design and Fabrication of X-Band 50 W Pulsed SSPA Using Pulse Modulation and Power Supply Switching Method (펄스 변조 및 전원 스위칭 방법을 혼용한 X-대역 50 W Pulsed SSPA 설계 및 제작)

  • Kim, Hyo-Jong;Yoon, Myoung-Han;Chang, Pil-Sik;Kim, Wan-Sik;Lee, Jong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.440-446
    • /
    • 2011
  • In this paper, a X-band 50 W pulsed solid state power amplifier(SSPA) is designed and fabricated for radar systems. The SSPA consists of a driver amplifier, a high power amplifier, and a pulse modulator. The high power stage employes four 25 W GaAs FET to deliver 50 W at X-band. To meet the stringent target specification for the SSPA, we used a new hybrid pulse switching method, which combine the advantage of pulse modulation and bias switching method. The fabricated SSPA shows a power gain of 44.2 dB, an output power of 50 W over a 1.12 GHz bandwidth. Also, pulse droop < 1 dB meet the design goals and a rise/fall time is less than 12.45 ns. Fabricated X-band pulsed SSPA size is compact with overall size of $150{\times}105{\times}30\;mm^3$.