• 제목/요약/키워드: bi-layer printing

검색결과 12건 처리시간 0.031초

Bi-layer Gravure Printed Organic Light Emitting Layers with MEH-PPV and Rubrene

  • Kim, A-Ran;Lee, Hye-Mi;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1508-1510
    • /
    • 2009
  • In this work, we have compared OLED devices made of blended MEH-PPV/Ruburene mixture and MEH-PPV/Rubrene bi-layer structure devices. The emission layers were made with two different ways - one with gravure printed single layer of blended mixture of MEH-PPV and rubrene, the other with gravure printed bilayers of MEH-PPV and rubrene. Both brightness and efficiency with gravure printed bi-layer devices were higher than blended devices. In this work, we demonstrated that organic bi-layers can be formed with gravure printing technology and higher efficiency can be achieved with bi-layer structure than with blended single layer structure.

  • PDF

동테이프 위의 Bi-계 초전도 후막에서 전구체분말 조성의 영향 (The Effect of the precursor powder composition for Bi-system superconducting thick films on Cu tapes)

  • 한상철;성태현;한영희;이준성;김상준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.65-68
    • /
    • 1999
  • A well oriented Bi2212 superconductor thick films were fabricated by screen printing with a Cu-free Bi-Sr-Ca-O mixture powder on a copper plate and heat-treating at 820-88$0^{\circ}C$ for several minute in air. During the heat-treatment, the printing layer partially melted by reaction between the Cu-free precursor and CuO of the oxidizing copper plate. In the partial melting state, it is believed that the solid phase is Bi-free phase and Cu-rich phase and the composition of the liquid is around Bi : Sr : Ca : Cu = 2 : 2 : 0 : 1. Following the partial melting, the Bi2212 superconducting phase is formed at Bi-free phase/liquid interface by nucleation and grows. With decreasing the Bi composition in the precursor powder, the critical temperature(T$_{c}$) of the fabricated Bi2212 thick film increased to about 79 K.K.

  • PDF

동피복재법을 이용한 Bi-Sr-Ca-Cu-O 고온초전도 후막 제조 (Fabrication of Cu-Sheathed Bi-Sr-Cu-O High Temperature Superconductor Thick Films)

  • 한상철;성태현;한영희;이준성;정상진
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.22-25
    • /
    • 1999
  • A well oriented Bi-2212 superconductor thick films were fabricated by screen printing with a Cu-free Bi-Sr-Ca-Cu-O powder on a copper plate and heat-treating at 820- $880^{\circ}C$for several minute in low oxygen pressure or are. At minute in low oxygen pressure of air. At , the printing layer partially melted by reaction between the Cu-free precursor by reaction between the Cu-free$870^{\circ}C$ precursor and CuO of the oxidizing copper plate. It is believed that the solid phase is Bi : Sr : Ca : Cu = 2 : 2 : 0 : 1. It is likely that the Bi-2212 superconducting phase is formed at Bi-2212 superconducting phase is formed at Bi-free phase/liquid interface by nucleation and grows.

  • PDF

Contact Transfer Printing Using Bi-layer Functionalized Nanobio Interface for Flexible Plasmonic Sensing

  • Lee, Jihye;Park, Jiyun;Lee, Junyoung;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.413-413
    • /
    • 2014
  • In this paper, we present a fabrication method of functionalized gold nanostructures on flexible substrate that can be implemented for plasmonic sensing application. For biomolecular sensing, many researchers exploit unconventional lithography method like nanoimprint lithography (NIP), contact transfer lithography, soft lithography, colloidal transfer printing due to its usability and easy to functionalization. In particular, nanoimprint and contact transfer lithography need to have anti-adhesion layer for distinctive metallic properties on the flexible substrates. However, when metallic thin film was deposited on the anti-adhesion layer coated substrates, we discover much aggravation of the mold by repetitive use. Thus it would be impossible to get a high quality of metal nanostructure on the transferred substrate for developing flexible electronics based transfer printing. Here we demonstrate a method for nano-pillar mold and transfer the controllable nanoparticle array on the flexible substrates without an anti-adhesion layer. Also functionalization of gold was investigated by the different length of thiol applied for effectively localized surface plasmonic resonance sensing. First, a focused ion beam (FIB) and ICP-RIE are used to fabricate the nanoscale pillar array. Then gold metal layer is deposited onto the patterned nanostructure. The metallic 130 nm and 250 nm nanodisk pattern are transferred onto flexible polymer substrate by bi-layer functionalized contact imprinting which can be tunable surface energy interfaces. Different thiol reagents such as Thioglycolic acid (98%), 3-Mercaptopropionic acid (99%), 11-Mercaptoundecanoic acid (95%) and 16-Mercaptohexadecanoic acid (90%) are used. Overcoming the repeatedly usage of the anti-adhesion layer mold which has less uniformity and not washable interface, contact printing method using bi-layer gold array are not only expedient access to fabrication but also have distinctive properties including anti-adhesion layer free, functionalized bottom of the gold nano disk, repeatedly replicate the pattern on the flexible substrate. As a result we demonstrate the feasibility of flexible plasmonic sensing interface and anticipate that the method can be extended to variable application including the portable bio sensor via mass production of stable nanostructure array and other nanophotonic application.

  • PDF

시효 처리에 의한 42Sn-58Bi 솔더와 무전해 Ni-P/치환 Au UBM 간의 계면 반응 (Interfacial Reaction between 42Sn-58 Bi Solder and Electroless Ni-P/Immersion Au UBM during Aging)

  • 조문기;이혁모;부성운;김태규
    • 마이크로전자및패키징학회지
    • /
    • 제12권2호
    • /
    • pp.95-103
    • /
    • 2005
  • 42Sn-58Bi 솔더(이하 wt.$\%$에 의한 표기)와 무전해 Ni-P/치환 Au under bump metallurgy (UBM) 간의 계면 반응을 intermetallic compound (IMC)의 형성과 성장, UBM의 감소, 그리고 범프 전단강도의 영향 관점에서 시효 처리 전 후에 어떠한 변화가 생기는 지를 알아보고자 하였다. 치환 Au 층을 $5{\mu}m$ 두께의 무전해 Ni-P ($14{\~}15 at.\%$ P)위에 세 가지 각기 다른 두께, 즉 $0{\mu}m$(순수한 무전해 Ni-P UBM), $0.1{\mu}m$, $1{\mu}m$로 도금하였다. 그 후 42Sn-58Bi 솔더 범프를 세 가지 다른 UBM 구조에 스크린프린팅 방식으로 형성하였다. 범프 형성 직후에는 세 가지 다른 UBM구조에서 솔더와 UBM 사이에 공통적으로 $Ni_3Sn_4$ IMC (IMC1) 만이 형성됐다. 하지만, 이를 $125^{\circ}C$에서 시효 처리를 할 경우 특이하게 Au를 함유한 UBM 구조에서는 $Ni_3Sn_4$ 위로 또 다른 4원계 화합물 (IMC2)이 관찰되었다. 원자 비로 $Sn_{77}Ni{15}Bi_6Au_2$인 4원계 화합물로 확인되었다. $Sn_{77}Ni{15}Bi_6Au_2$ 층은 솔더 조인트의 접합성에 매우 치명적인 영향을 미쳤다. 시효 처리를 거친 Au를 함유한 UBM 구조에서 솔더 범프의 전단 강도 값은 시효 처리 전에 비해 $40\%$ 이상의 감소를 보였다.

  • PDF

Cu-free 전구체를 이용한 동 테이프 위의 Bi2212 초전도 후막의 급속 제조 (Rapid Fabrication of Bi2212 Superconducting Films on Cu Tape with Cu-free Precursor)

  • 한상철;성태현;한영희;이준성;김상준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.69-72
    • /
    • 1999
  • A Well oriented Bi$_2$re$_2$CaCu$_2$O$\sub$8/(Bi2212) superconductor thick films were formed successfully on a copper substrate by liquid reaction between a Cu-free precursor and Cu tape using method in which Cu-free BSCO powder mixture was printed on copper plate and heat-treated. And we examined the mechanism for the rapid formation of Bi2212 superconducting films from observing the surface microstructure with heat-treatment time. At heat-treatment temperature, the printing layer partially melt by reacting with CuO of the oxidizing copper plate, and the nonsuperconducting phases present in the melt are typically Bi-free phases and Cu-free phases. Following the partial melting, the Bi$_2$Sr$_2$CaCu$_2$O$\sub$8/ superconducting phase is formed at Bi-free phase/liquid interface by nucleation and grows. It was confirmed that the phase colony from the phase diagram of Bi$_2$O$_3$-(SrO+CaO)/2-CuO system is similar to the observed result.

  • PDF

Bi-계 고온초전도 선재의 제조 및 특성 연구 (A study on the fabrication and characterization of high temperature superconducting(HTS) tapes in Bi-System)

  • 정년호;성태현;한영희;한상철;이준성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.474-477
    • /
    • 2002
  • We performed a continuous heat treatment experiment for long Si$_2$Sr$_2$CaCuO$_{x}$ (Bi2212) superconductor tapes on copper substrates. A precursor that contains a mixture of Bi$_2$O$_3$, SrCO$_3$, and CaCO$_3$ powders was prepared and screen-printed on Cu tapes. The screen- printed tapes were thermally treated by consecutive processes with various temperature settings using an air-filled tube furnace. The diffraction patterns and the microstructures of the high temperature superconductor thick films were analyzed by X-ray diffractometry (XRD) and optical Microscopy respectively, and the critical temperatures of the superconducting thick films were measured. The critical temperatures of the superconducting films were measured to be about 77K, and the films'crystallographic c-axes were confirmed to be normal to the film surfaces by XRD and morphology observation. We also observed that the thick superconducting layer is formed and aligned on the copper substrate via partial melted state that consists of a liquid phase and a secondary phase.e.

  • PDF

$BiNbO_4$세라믹스를 이용한 저역통과 필터에 관한 연구 (Experimental Fabrication of Low Pass Filter of $BiNbO_4$ Ceramics)

  • 고상기;김경용;김병호;최환
    • 한국전기전자재료학회논문지
    • /
    • 제11권4호
    • /
    • pp.281-287
    • /
    • 1998
  • $BiNbO_4$ ceramics doped with 0.07wt% $V_2O_5$ and 0.03wt% CuO (BNC3V7) were sucessfully sintered at $900^{\circ}C$ through the firing process with Ag electrode. The BNC3V7 shows typically Dielectric constant of 44.3, Thermal Coefficient of resonance Frequency(TCF) of 2 ppm/$^{\circ} and $Qxf_o$ value of 22,000 GHz. The laminated chip Low Pass Filter (LPF) is very sensitive to chip processing parameters, was confirmed by the computer simulation as a function of Q(Quality factors), filter size, capacitor layer thickness, inductor pattern widths. The multilayer type LPF was fabricated by screen-printing with Ag electrode after tape casting and then compared with the simulated characteristics. The results show that characterization of band pass width was similar to that of designed ones.

  • PDF

열처리 분위기에 따른 동/Bi2212 고온초전도 테입의 미세구조 (Microstructure Analysis of Cu/Bi2212 High Temperature Superconducting Tapes with Meat-Treatment Atmosphere)

  • 한상철;성태현;한영희;이준성;이원택;김상준
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.388-391
    • /
    • 1999
  • Well oriented Bi2212 superconductor thick films were formed successfully on a copper substrate by liquid reaction between a Cu-free precursor and Cu tape method in which Cu-free BSCO powder mixture was' printed on copper plate and heat-treated. And we examined the effect of heat-treatment atmosphere for the superconducting properties and microstructure of Bi2212. The composition of Cu-free BSCO powder mixture was Bi$_2O_3$ : SrCO$_3$ : CaCO$_3$ = 1.2~2 : 1 : 1 and the heat-treatment for the superconducting formation reaction was performed in air, oxygen, nitrogen and low oxygen pressure. At heat-treatment temperature, the printing layer partially melt by reacting with CuO of the oxidizing copper plate, and the nonsuperconducting phases present in the melt are typically Bi-free phases and Cu-free phases. Among the nonsuperconducting phases, it is known that the (Sr,Ca)CuO$_3$ phase restrain the formation of the Bi2212 superconducting phase. Because a kind of the nonsuperconducting phases is controled by the oxygen partial pressure, the optimum condition in which the remnants of the second phases don't leave in the fully processed conductor was determined by XRD and the critical tempera to re (Tc) analysis.

  • PDF

Bi2O3-ZnO-SiO2 유리계의 투명유전체 후막에서 나타난 광학특성 (Optical Properties of Bi2O3-ZnO-SiO2 Glass System for Transparent Dielectric)

  • 전재삼;차명룡;김형순
    • 한국재료학회지
    • /
    • 제14권9호
    • /
    • pp.670-675
    • /
    • 2004
  • Glasses in the $Bi_{2}O_3-SiO_2-ZnO$ glasses system were examined as a potential replacement for lead-oxide glass frits with low firing temperature ($500\sim600^{\circ}C$) for the dielectric layer of a plasma display panel (PDP). The glasses were evaluated for glass transition temperature($T_{g}$) and thermal expansion coefficient(${\alpha}$). After forming transparent thick films by a screen-printing method, it was evaluated for the optical properties. The transmittance of thick films fired at $500-600^{\circ}C$ showed above $80\%$, which was not dependent on the firing temperature. As a result, many pores were observed at samples fired at low temperature, while the number of pores from samples prepared at high temperature decreased and the pores size increased.