• Title/Summary/Keyword: bi-directional tidal current flow

Search Result 6, Processing Time 0.019 seconds

Performance Evaluation of the 100kW bi-directional tidal current turbine by CFD (CFD에 의한 100kW급 양방향 조류발전터빈의 성능평가)

  • Kim, Jeong-Yoon;Kim, Ki-Pyoung;Kim, Chang-Goo;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.163.1-163.1
    • /
    • 2011
  • 세계는 지금 지구 온난화 및 화석연료의 고갈로 인해 대체 에너지 자원의 확보문제가 급속히 대두되고 있다. 이에 조류발전은 오염이 발생하지 않는 친환경 에너지원으로서, 날씨나 계절에 상관없이 항상 발전할 수 있는 신뢰성 있는 에너지이며, 높은 밀도를 가지는 작동유체가 수차에 미치는 영향 또한 크므로 지속적으로 예측이 가능한 장점을 가지고 있다. 이러한 조류에너지는 실 해역에 적용하기 위해서는 전격유효 전력이 생산 가능한 지리적 요인에 대한 고찰과 더불어 조류발전 터빈의 개념설계가 고려되어야 한다. 본 연구는 다양한 설치 공간을 형성할 수 있으며, 장, 단점이 보완될 수 있는 조류발전 터빈의 개념설계 연구 단계로서, 내부 유동 특성을 고려하여 입구를 설계하였으며, 일정한 속도로 유입되는 유량을 노즐의 장착을 통해 에너지 밀도를 높일 수 있게 된다. 이러한 개념형상 설계로 추가 작동이나, 장치의 사용 없이 양방향 발전이 가능해 진다.

  • PDF

Numerical Simulation Test of Scour around Offshore Jacket Structure using FLOW-3D (FLOW-3D를 이용한 해상 자켓구조물 주변의 세굴 수치모의 실험)

  • Ko, Dong Hui;Jeong, Shin Taek;Oh, Nam Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.373-381
    • /
    • 2015
  • As offshore structures such as offshore wind and offshore platforms have been installed frequently in ocean, scour effects are considered important. To test the scour effect, numerical simulation of scour has been carried out. However, the test was usually conducted under the uni-directional flow without bi-directional current flow in western sea of Korea. Thus, in this paper, numerical simulations of scour around offshore jacket substructure of HeMOSU-1 installed in western sea of Korea are conducted using FLOW-3D. The conditions are uni-directional and bi-directional flow considering tidal current. And these results are compared to measured data. The analysis results for 10,000 sec show that under uni-directional conditions, maximum scour depth was about 1.32 m and under bidirectional conditions, about 1.44 m maximum scour depth occurred around the structure. Meanwhile, about 1.5~2.0 m scour depths occurred in field observation and the result of field test is similar to result under bi-directional conditions.

Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow (왕복류 흐름을 고려한 지반의 수리저항성능 실험)

  • Kim, Young-Sang;Gang, Gyeong-O
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.118-125
    • /
    • 2011
  • Conventional erosion function apparatus (EFA) which has been used to measure the hydraulic resistance of soil was improved to consider direction change of the current flow. Using improved apparatus, hydraulic resistance capacities of the artificially composed clayey soil and sandy soil were compared. Test result shows that scour rates which were measured under the bi-directional flow were much higher than those measured under unidirectional flow for both type soils. Scour rate of sandy soil was higher than that of clayey soil. Velocity averaged scour rate of specimen which was consolidated under the relatively large consolidation pressure is higher than that of specimen which is consolidated under small consolidation pressure, which means scour problem under bidirectional flow may be more serious for the deep seabed ground.

Effect of Incidence Angle of Current on the Hydraulic Resistance Capacity of Clayey Soil (흐름의 입사각이 점성토 지반의 수리저항성능에 미치는 영향)

  • Kim, Young-Sang;Han, Byung-Duck;Kang, Gyeong-O
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.26-35
    • /
    • 2012
  • Until now, study on the hydraulic resistance characteristics of the ground at the river and the ocean current has been focused on the behavior under uni-directional flow without the direction change of flow. However, recent research result shows that scour rate which were measured under the bi-directional flow was much higher than those measured under uni-directional flow for both fine grained and coarse soil. Since the direction of inflow and return flow at the shore, where the structure will be constructed, is not always $180^{\circ}$, effect of the incidence angle on the hydraulic resistance capacity of the ground should be examined. Using the improved EFA which can consider the direction change of flow, hydraulic resistance capacities of the artificially composed clayey fine grained soil and clayey sandy soil under $0^{\circ}$, $90^{\circ}$, $135^{\circ}$, $180^{\circ}$ flow angle of incidence were assessed. Test result shows that hydraulic resistance capacity decreases and scour rate increase with the increase of the incidence angle between inflow and return flow. For the low consolidation pressure condition, hydraulic resistance capacity of the fine grained soil decreases rapidly. While the hydraulic resistance capacity of the coarse grained soil decreases more rapidly than fine grained soil under high consolidation pressure. Eventually since the larger the incidence angle between inflow and return flow, the larger the scour rate. Hydraulic resistance capacity under bi-directional flow($0^{\circ}{\longleftrightarrow}180^{\circ}$) should be examined for the design purpose.

Relationship between Electrical Resistivity and Hydraulic Resistance Capacity measured by Rotating Cylinder Test (회전식 수리저항성능 실험기를 이용한 지반의 수리저항특성과 전기비저항 특성의 상관관계)

  • Kim, Young Sang;Jeong, Shin Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Recently, constructions of coastal structure including wind turbine structure have increased at southwest shore of Korea. There is a big difference of tide which rage from 3.0 m to 8.0 m at south and wet shore of Korea, respectively. In such ocean circumstance, large scour may occur due to multi-directional tidal current and transverse stress of the wind. therefore scour surrounding wind turbine structure can make system unsafe due to unexpected system vibration. In this study, hydraulic resistance capacity, i.e., critical velocity and critical shear stress, was evaluated by RCT. Uni-directional and bi-directional hydraulic resistance capacities of the samples which were consolidated by different preconsolidation pressures were correlated with soil resistivities of same samples. According to the correlation, it is possible to estimate hydraulic resistance capacity from electrical resistivity of soil. Through the updating the correlation for various soil types, it is expected that the hydraulic resistance capacity of whole construction site will be simply determined from the electrical resistivity.

Effects of Flow Direction and Consolidation Pressure on Hydraulic Resistance Capacity of Soils (흐름방향과 압밀응력이 지반의 수리저항특성에 미치는 영향)

  • Kim, Youngsang;Jeong, Shinhyun;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.55-66
    • /
    • 2015
  • Big tidal differences, which range from 3.0 m to 8.0 m, exist with regional locations at south and west shores of Korea. Under this ocean circumstance, since a large scour may occur due to multi-directional tidal current and transverse stress of the wind, the scour surrounding the wind turbine structure can make instability of the system due to unexpected system vibration. The hydraulic resistance capacity of soils consolidated under different pressures are evaluated by Erosion Function Apparatus (EFA) under unidirectional and bi-directional flows in this study. It was found that the flow direction change affects significantly on the sour rate and critical shear stress, regardless of soil types while the consolidation pressure affects mainly cohesive soil. Among geotechnical parameters, the undrained shear strength can be well-correlated with the hydraulic resistance capacity, regardless soil type while the shear wave velocity shows the proportional relationships with the hydraulic resistance capacities of fine grained soil and coarse grained soil, respectively.