DOI QR코드

DOI QR Code

Numerical Simulation Test of Scour around Offshore Jacket Structure using FLOW-3D

FLOW-3D를 이용한 해상 자켓구조물 주변의 세굴 수치모의 실험

  • Ko, Dong Hui (Hae Poong Engineering Inc.) ;
  • Jeong, Shin Taek (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Oh, Nam Sun (Ocean.Plant Construction Engineering, Mokpo Maritime National University)
  • 고동휘 ((주)해풍기술) ;
  • 정신택 (원광대학교 토목환경공학과) ;
  • 오남선 (목포해양대학교 해양.플랜트건설공학과)
  • Received : 2015.10.08
  • Accepted : 2015.10.19
  • Published : 2015.12.31

Abstract

As offshore structures such as offshore wind and offshore platforms have been installed frequently in ocean, scour effects are considered important. To test the scour effect, numerical simulation of scour has been carried out. However, the test was usually conducted under the uni-directional flow without bi-directional current flow in western sea of Korea. Thus, in this paper, numerical simulations of scour around offshore jacket substructure of HeMOSU-1 installed in western sea of Korea are conducted using FLOW-3D. The conditions are uni-directional and bi-directional flow considering tidal current. And these results are compared to measured data. The analysis results for 10,000 sec show that under uni-directional conditions, maximum scour depth was about 1.32 m and under bidirectional conditions, about 1.44 m maximum scour depth occurred around the structure. Meanwhile, about 1.5~2.0 m scour depths occurred in field observation and the result of field test is similar to result under bi-directional conditions.

해상풍력 기기, 해상 플랫폼과 같은 구조물이 해상에서 빈번하게 설치되면서 세굴에 관한 영향도 중요시되고 있다. 이러한 세굴 영향을 검토하기 위해 세굴 수치모의 실험을 수행한다. 일반적으로 수치모의 조건은 일방향 흐름에 대해서만 검토가 이뤄지고 있으며 서해안과 같은 왕복성 조류 흐름에 대해서는 검토되지 않는다. 본 연구에서는 서해안에 설치된 HeMOSU-1호 해상 자켓구조물 주변에서 발생하는 세굴 현상을 FLOW-3D를 이용하여 수치모의하였다. 해석 조건으로는 일방향 흐름과 조석현상을 고려한 왕복성 흐름을 고려하였으며, 이를 현장 관측값과 비교하였다. 10,000초 동안의 수치모의 결과, 일방향의 흐름 조건에서는 1.32 m의 최대 세굴심이 발생하였으며, 양방향 흐름 조건에서는 1.44 m의 최대 세굴심이 발생하였다. 한편, 현장 관측값의 경우 약 1.5~2.0 m의 세굴심이 발생하여 양방향의 흐름에 대한 해석 결과와 근사한 값을 보였다.

Keywords

References

  1. American Bureau of Shipping (ABS) (2013). Guide for Building and Classing Bottom-Founded Offshore Wind turbine Installations.
  2. API RP 2A WSD (2005). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design. API.
  3. Det Norske Veritas (DNV) (2010). OS-J101 Design of Offshore Wind Turbine Structures.
  4. Federal Maritime and Hydrographic Agency (BSH) (2007). Standard. Design of Offshore Wind Turbines.
  5. FLOW SCIENCE (2014). FLOW-3D User's Manual, Version 11.0.4.5.
  6. International Electrotechnical Commission (IEC) (2009). IEC 61400-3: Wind turbines - Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.
  7. International Organization for Standardization (ISO) (2007). ISO 19902: Petroleum and Natural Gas Industries - Fixed Steel Offshore Structures.
  8. Kim, Y.S., and Kang G.O. (2011). Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow. Journal of Korean Society of Coastal and Ocean Engineers, 23(1), 118-125 (in Korean). https://doi.org/10.9765/KSCOE.2011.23.1.118
  9. Kim, Y.S., Han, B.D., and Kang G.O. (2012). Effect of Incidence Angle of Current on the Hydraulic Resistance Capacity of Clayey Soil. Journal of Korean Society of Coastal and Ocean Engineers, 24(1), 26-35 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.1.026
  10. KORDI (2011). BSPN64710-2275-2. An Analysis on the Marine Characteristics and Design Supporting for Offshore Wind Power Plant (in Korean).
  11. Ministry of Maritime Affairs and Fisheries (2005). Harbor and fishery design criteria (in Korean).
  12. Soulsby, R. (1997). Dynamics of marine sands. Thomas Telford Publications, London.
  13. U.S. Army Corps of Engineers (2006). Coastal Engineering Manual, Part II : Coastal Hydrodynamics, Chapter II-2, Meteorology and Wave Climate.
  14. van Rijn, L. (1984). Sediment transport, Part II:bed load transport. Journal of Hydraulic Engineering, 110(10), 1431-1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)

Cited by

  1. Reliability Analysis of Offshore Wind Turbines Considering Soil-Pile Interaction and Scouring Effect vol.28, pp.4, 2016, https://doi.org/10.9765/KSCOE.2016.28.4.222
  2. Scour Protection Effect around the Monopile Foundation vol.20, pp.2, 2017, https://doi.org/10.7846/JKOSMEE.2017.20.2.84