DOI QR코드

DOI QR Code

Effects of Flow Direction and Consolidation Pressure on Hydraulic Resistance Capacity of Soils

흐름방향과 압밀응력이 지반의 수리저항특성에 미치는 영향

  • Kim, Youngsang (Department of Marne and Civil Engineering, Jeonnam National University) ;
  • Jeong, Shinhyun (Dong-A Engineering CO. Ltd.) ;
  • Lee, Changho (Department of Marne and Civil Engineering, Jeonnam National University)
  • Received : 2015.03.02
  • Accepted : 2015.04.14
  • Published : 2015.05.01

Abstract

Big tidal differences, which range from 3.0 m to 8.0 m, exist with regional locations at south and west shores of Korea. Under this ocean circumstance, since a large scour may occur due to multi-directional tidal current and transverse stress of the wind, the scour surrounding the wind turbine structure can make instability of the system due to unexpected system vibration. The hydraulic resistance capacity of soils consolidated under different pressures are evaluated by Erosion Function Apparatus (EFA) under unidirectional and bi-directional flows in this study. It was found that the flow direction change affects significantly on the sour rate and critical shear stress, regardless of soil types while the consolidation pressure affects mainly cohesive soil. Among geotechnical parameters, the undrained shear strength can be well-correlated with the hydraulic resistance capacity, regardless soil type while the shear wave velocity shows the proportional relationships with the hydraulic resistance capacities of fine grained soil and coarse grained soil, respectively.

우리나라 남서해안의 조차는 지역에 따라 3~8m까지 발생하며 이 지역의 풍력기초들은 조류의 다양한 흐름에 의한 세굴로 전체 구조물에 예상치 못한 진동에 의한 장기적인 불안정성이 야기될 수 있다. 본 연구에서는 흐름방향을 고려할 수 있도록 개선된 관수로식 수리저항성능 실험기를 이용하여 압밀압력과 흐름방향의 변화가 지반의 수리저항성능에 미치는 영향을 검토하였다. 실험결과 양방향 흐름에 노출된 시료의 세굴률이 일방향 흐름에서보다 크며, 한계전단응력은 감소하여 세굴에 더욱 취약해지는 것으로 나타났다. 또한 압밀압력이 증가함에 따라 세립질 토사의 한계전단응력과 같은 수리저항특성은 증가하여 세굴에 대한 저항성이 증가하나 조립토의 수리저항 성능은 크게 변화하지 않았다. 지반공학적 특성과 수리저항특성의 상관관계를 검토한 결과, 비배수전단강도는 한계전단응력과 비례관계이며 세립토 및 조립토의 흙 분류와 관계없이 하나의 상관관계로 효과적으로 한계전단응력을 예측할 수 있는 것으로 나타났으며 전단파 속도는 한계전단응력과 비례관계에 있으며 조립토와 세립토의 영역에 따라 비교적 명확히 구분되었다.

Keywords

References

  1. 한국지반공학회 (2005), 연약지반 (지반공학 시리즈 6), 구미서관, pp. 6-12.
  2. Breusers, H. N. C., Niccollet, G. and Shen, H. W. (1997), Local scour around offshore cylindrical pier, Journal of Hydraunlic Research, Vol. 15, No. 3, pp. 211-215.
  3. Briaud, J. L., Ting, F., Chen, H. C., Cao, Y., Han, S. W. and Kwak, K. (2001), Erosion function apparatus for scour rate predictions, J. Geotech. Geoinviron. Eng., ASCE, Vol. 127, No. 2, pp. 105-113. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105)
  4. Castangna, J., Batzle, M. and Eastwood, T. (1985), Relationships between compressional wave and shear wave velocities in clastic silicate rocks, Geophysics, Vol. 50, No. 4, pp. 571-581. https://doi.org/10.1190/1.1441933
  5. Hegazy, Y. A. and Mayne, P. W. (2006), A global statistical correlation between shear wave velocity and cone penetration data, Site & Geomaterial Characterization (GSP 149), Proceeding of Geoshanghai, ASCE, Shanghai, China, pp. 243-248.
  6. Kwak, K. S., Lee, J. H., Park, J. H., Chung, M. K. and Bae, G. J. (2004), Influence of soil properties on erodibility of finegrained soils, Journal of the Korean Geotechnical Society, Vol. 20, No. 8, pp. 89-96 (in Korean).
  7. Kim, Y. S. and Gang, G. O. (2011a), Experimental study on hydraulic resistance of sea ground, Journal of Korean Society of Costal and Ocean Engineers, Vol. 23, No. 1, pp. 118-125 (in Korean). https://doi.org/10.9765/KSCOE.2011.23.1.118
  8. Kim, Y. S. and Gang, G. O. (2011b), Experimental study on hydraulic resistance of sea ground considering tidal current flow, Journal of Korean Society of Coastal and Ocean Engineers, Vol. 24, No. 1, pp. 26-35 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.1.026
  9. Knox, D. P., Stokoe, K. H. II. and Kopperman, S. E. (1982), Effect of state of stress on velocity of low-amplitude shear waves propagating along principal stress directions in dry sand, University of Texas at Austin, Geotechnical Engineering Report GR 82-23, pp. 16-23.
  10. Kyoung, N. H., Yoon, J. F., Jang, M. S. and Jang, D. S. (2003), An assessment of offshore wind energy resources around Korean peninsula, Journal of the Korean Solar Energy Society, Vol. 20, No. 8, pp. 89-96 (in Korean).
  11. Lee, J. S. and Lee, C. H. (2006), Principles and considerations of bender element tests, Journal of the Korean Geotechnical Society, Vol. 22, No. 5, pp. 47-57 (in Korean).
  12. Lee, J. S., Lee, C. H., Yoon, H. K. and Lee, W. J. (2010), Penetration type field velocity probe for soft soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 136, No. 1, pp. 199-206. https://doi.org/10.1061/(ASCE)1090-0241(2010)136:1(199)
  13. Lee, J. S. and Santamarina, J. C. (2005), Bender elements: performance and signal interpretation, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 9, pp. 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
  14. Nakagawa, H. and Suzuki, K. (1976), Local scour around bridge pier in tidal current, Coastal Engineering in Japan, Vol. 1, No. 19, pp. 89-100
  15. NCHRP (2001), Complex pier scour and contraction scour in cohesive soils, Transportation Research Board, pp. 11-15.
  16. Ohta, Y. and Goto, N. (1978), Empirical shear wave velocity equations in terms of characteristic soil indexed, Earthquake Engineering and Structural Dynamics, Vol. 6, No. 2, pp. 167-187. https://doi.org/10.1002/eqe.4290060205
  17. Robertson, P., Campanella, R., Gillespie, D. and Rice, A. (1986), Seismic CPT to measure in situ shear wave velocity, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 112, No. 8, pp. 791-803. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(791)
  18. Roesler, S. K. (1979), Anisotropic shear modulus due to stress anisotropy, Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No. 7, pp. 871-880.
  19. Rudolph, D., Bos, K. J. and Luijendijk, A. P. (2004), Scour around offshore structures analysis of field measurement, Proceedings of Second International Conference of SCOUR and EROSION, Vol. 1, pp. 1-8.
  20. Santamarina, J. C., Klein, K. A. and Fam, M. A. (2001), Soils and waves - particulate materials behavior, Characterization and Process Monitoring. John Wiley & Sons. New York, pp. 254-260.
  21. Sumer, B. M. and Fredsoe, J. (2002), The mechanics of scour in the marine environment, Advanced Series on Ocean Engineering, Vol. 17, World Scientific Publishing Co. Pte. Ltd. pp. 1-552.
  22. Thorn, M. F. C. and Parson, J. G. (1980), Erosion of cohesive sediments in estuaries. 3rd International Symposium on Dredging Technology, Bordeaux, France. pp. 349-358.
  23. Yoon, H. K. and Lee, J. S. (2010), Field velocity resistivity probe for estimating stiffness and void ratio, Soil Dynamics and Earthquake Engineering, Vol. 30, No. 12, pp. 1540-1549. https://doi.org/10.1016/j.soildyn.2010.07.008
  24. Yu, P. and Richart, F. E. Jr. (1984), Stress ratio effects on shear modulus of dry sands, Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 3, pp. 331-345. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:3(331)