• 제목/요약/키워드: beta-amyloid precursor protein (APP)

검색결과 83건 처리시간 0.024초

원지와 석창포 혼합추출액의 pCT105로 유도된 신경세포암 세포주에 대한 항치매 효과 (The Effects of anti-Alzheimer in pCT105-induced Neuroblastoma cell lines by Radix Polygalae and Rhizoma Acori Graminei mixture extract)

  • 이성률;강형원;김상태;류영수
    • 동의생리병리학회지
    • /
    • 제17권4호
    • /
    • pp.1037-1049
    • /
    • 2003
  • Numerous lines of evidence indicate that some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the amyloid precursor protein (APP). Most research has focused on the amyloid 6 (M). However, the possible role of other cleaved products of APP is less clear. Lately It has been reported that a recombinant carboxy-terminal 105 amino acid fragment (CT105) of APP induced strong nonselective inward currents in Xenopus oocyte. In a brain with Alzheimer's disease (AD), to investigate the roles of carboxyl-terminal fragment (CT105) of amyloid precursor protein (APP) in apoptosis processes possibly linked to neurodegeneration associated with AD, we examined the effects of the CT of APP with 105 amino acid residues (CT105) on the alteration of apoptosis triggers in neubroblastoma cells. We have investigated whether Radix Polygalae and Rhizoma Acori Graminei mixture extract (RP+RAG) inhibits CT105-induced apoptosis of neuroblastoma cells. We found that RP+RAG inhibits CT105-induced apoptosis in SK-N-SH cells. Treatment of the cells with RP+RAG inhibited CT105-induced DNA fragmentation and Tunel assay of nuclear chromatin and inhibited the caspase-3 expression in SK-N-SH cells. As the result of this study, In RP+RAG group, the apoptosis in the nervous system is inhibited, the repair against the degerneration of neuroblastoma cells by CT105 expression is promoted. These results indicate that RP+RAG possess strong inhibitory effect of apoptosis in the nervous system and repair effect against the degeneration of neuroblastoma cells by CT105 expression

β-Sitosterol treatment attenuates cognitive deficits and prevents amyloid plaque deposition in amyloid protein precursor/presenilin 1 mice

  • Ye, Jian-Ya;Li, Li;Hao, Qing-Mao;Qin, Yong;Ma, Chang-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권1호
    • /
    • pp.39-46
    • /
    • 2020
  • Alzheimer's disease (AD) is the most common neurodegenerative disorder causing dementia worldwide, and is mainly characterized by aggregated β-amyloid (Aβ). Increasing evidence has shown that plant extracts have the potential to delay AD development. The plant sterol β-Sitosterol has a potential role in inhibiting the production of platelet Aβ, suggesting that it may be useful for AD prevention. In the present study, we aimed to investigate the effect and mechanism of β-Sitosterol on deficits in learning and memory in amyloid protein precursor/presenilin 1 (APP/PS1) double transgenic mice. APP/PS1 mice were treated with β-Sitosterol for four weeks, from the age of seven months. Brain Aβ metabolism was evaluated using ELISA and Western blotting. We found that β-Sitosterol treatment can improve spatial learning and recognition memory ability, and reduce plaque load in APP/PS1 mice. β-Sitosterol treatment helped reverse dendritic spine loss in APP/PS1 mice and reversed the decreased hippocampal neuron miniature excitatory postsynaptic current frequency. Our research helps to explain and support the neuroprotective effect of β-Sitosterol, which may offer a novel pharmaceutical agent for the treatment of AD. Taken together, these findings suggest that β-Sitosterol ameliorates memory and learning impairment in APP/PS1 mice and possibly decreases Aβ deposition.

Structure of CT16 in the C-terminal of Amyloid Precursor Protein Studied by NMR Spectroscopy

  • Lee, Kyoung-Ik;Baek, Dong-Ha;Shin, Song-Yub;Kim, Yang-Mee
    • 한국자기공명학회논문지
    • /
    • 제8권1호
    • /
    • pp.19-27
    • /
    • 2004
  • C-terminal fragments of APP (APP-CTs), that contain complete Abeta sequence, are found in neuritic plaques, neurofibrillary tangles and the cytosol of lymphoblastoid cells obtained from AD patients. CT16, Lys649-Asp664 (KKQYTSIHHGVVEVD) has been known as the most toxic part in the C-terminal fragment of amyloid precursor protein (APP). The solution structure of CT16 was investigated using NMR spectroscopy in various membrane-mimicking environments. According to Circular Dichroim (CD) spectra, CT16 has a random structure in aqueous solution, while conformational change was induced by addition of TFE and SDS micelle. Tertiary structure as determined by NMR spectroscopy shows that CT16 has a ${\beta}$-turn conformation in trifluoroethanol-containing aqueous solution.

  • PDF

캠벨얼리(Vitis labruscana B.) 잎 에탄올 추출물이 신경세포에서 아밀로이드 전구 단백질의 발현과 아세틸콜린에스테라제 활성에 미치는 영향 (The Effect of Vitis labruscana B. Leaves Ethanol Extract on the Expression of Amyloid Precursor Protein in Neuroblastoma Cells and on the Acetylcholinesterase Activity)

  • 최하연;김주은;마상용;조형권;김대성;임재윤
    • 생약학회지
    • /
    • 제53권2호
    • /
    • pp.102-110
    • /
    • 2022
  • Alzheimer's disease (AD) is the most common form of dementia, and the accumulation of β-amyloid (Aβ) in the brain triggers AD, followed by hyperphosphorylation of tau protein, neurofibrillary tangles, and synapses loss, neuronal cell death, and cognitive decline occur in a chain. In APPswe neuronal cell line, 50 ㎍/ml of Campbell early (Vitis labruscana B.) leaves 50% ethanol extract (VLL) treatment inhibited the secretion of Aβ1-42 by about 63% and the secretion of Aβ1-40 by about 50%. VLL did not target the enzymatic activity of the amyloidogenic pathway and decreased the protein expression of APP. As a result of RT-qPCR (Reverse transcription-quantitative real-time PCR) of the APPswe cell line treated with VLL, it is thought that the protein expression of APP was reduced by inhibiting the transcription process of the APP gene. In addition, VLL inhibited acetylcholinesterase (AChE) enzyme activity in vitro by 27.6% and 54.7%, respectively, at 50 and 100 ㎍/ml concentrations. We found that VLL inhibited the production of Aβ, a dementia-inducing substance, by suppressing the transcription of the APP gene, and that VLL inhibited AChE activity. We suggest that VLL has the potential as a natural drug material that modulates the alleviation of dementia symptoms.

봉선화 전초의 메탄올 추출물이 신경세포에서 아밀로이드 전구단백질의 대사에 미치는 영향 (Effects of MeOH Extract of Impatiens balsamina L. on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells)

  • 조윤정;임재윤
    • 생약학회지
    • /
    • 제46권1호
    • /
    • pp.72-77
    • /
    • 2015
  • One of the most common forms of dementia, Alzheimer's disease (AD) is a progressive neurodegenerative disorder symptomatically characterized by impairment in memory and cognitive abilities. AD is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}$-amyloid ($A{\beta}$) peptides, believed to be neurotoxic and now is also considered to have a role on the mechanism of memory dysfunction. In this study, we tested that MeOH extract of Impatiens balsamina L. (IBM) affects on the processing of APP from the APPswe over-expressing Neuro2a cell line. We found that IBM increased over 2 folds of the $sAPP{\alpha}$ secretion level, a main metabolite of ${\alpha}$-secretase. We shown that IBM reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ without cytotoxicity. BACE (${\beta}$-site APP cleaving enzyme) FRET assay shown that BACE activity was specifically decreased in the presence of IBM. We suggest that Impatiens balsamina L. may be an useful source to develop a herbal medicine of BACE inhibitor for Alzheimer's disease.

Altered APP Carboxyl-Terminal Processing Under Ferrous Iron Treatment in PC12 Cells

  • Kim, Chi Hyun;Yoo, Yeong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권3호
    • /
    • pp.189-195
    • /
    • 2013
  • Amyloid-${\beta}$ peptide ($A{\beta}$), generated by proteolytic cleavage of the amyloid precursor protein (APP), plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). The key step in the generation of $A{\beta}$ is cleavage of APP by beta-site APP-cleaving enzyme 1 (BACE1). Levels of BACE1 are increased in vulnerable regions of the AD brain, but the underlying mechanism is unknown. In the present study, we reported the effects of ferrous ions at subtoxic concentrations on the mRNA levels of BACE1 and a-disintegrin-and-metalloproteinase 10 (ADAM10) in PC12 cells and the cell responses to ferrous ions. The cell survival in PC12 cells significantly decreased with 0 to 0.3 mM $FeCl_2$, with 0.6 mM $FeCl_2$ treatment resulting in significant reductions by about 75%. 4,6-diamidino-2-phenylindole (DAPI) staining showed that the nuclei appeared fragmented in 0.2 and 0.3 mM $FeCl_2$. APP-${\alpha}$-carboxyl terminal fragment (APP-${\alpha}$-CTF) associations with ADAM10 and APP-${\beta}$-CTF with BACE1 were increased. Levels of ADAM10 and BACE1 mRNA increased in response to the concentrations of 0.25 mM, respectively. In addition, p-ERK and p-Bad (S112, S155) expressions were increased, suggesting that APP-CTF formation is related to ADAM10/ BACE1 expression. Levels of Bcl-2 protein were increased, but significant changes were not observed in the expression of Bax. These data suggest that ion-induced enhanced expression of AMDA10/BACE1 could be one of the causes for APP-${\alpha}/{\beta}$-CTF activation.

β-Secretase (BACE1) Purification by Refolding Method and Complex with Hispidin

  • Lim, Ji-Hong;Lee, Bo Ram;Park, Hee Won;Hong, Bum Soo;Lim, Beong Ou;Kim, Young Jun
    • 대한화학회지
    • /
    • 제58권6호
    • /
    • pp.553-559
    • /
    • 2014
  • Alzheimer's disease (AD) is a devastating neurodegenerative disease that represents the most common form of dementia among the elderly population. The deposition of aggregated ${\beta}$-amyloid ($A{\beta}$) senile plaques in the human brain is a classic observation in the neuropathology of AD, yet an understanding of the mechanism of their formation remains elusive. $A{\beta}$ is formed through endoproteolysis of the amyloid precursor protein (APP) by ${\beta}$-secretase (BACE1, ${\beta}$-site APP-cleaving enzyme) and ${\gamma}$-secretase. In this study, BACE1 protein was successfully over-expressed, purified, and refolded and utilized in a binding study with hispidin. We developed a simpler refolding method using a urea gradient and size-exclusion gel filtration to purify an active BACE1 protein variant, in larger quantities than that reported previously, and measured the binding affinity of hispidin to the BACE1 protein variant through isothermal titration calorimetry.

Hopea chinensis (Merr.) Hand.-Mazz. 메탄올 추출물이 신경세포에서 아밀로이드 전구 단백질 대사에 미치는 영향 (The Effects of MeOH Extract of Hopea chinensis (Merr.) Hand.-Mazz. on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells)

  • 쉬레스타 아비나쉬 찬드라;김주은;함하늘;조윤정;트란 더 바이트;엄상미;임재윤
    • 생약학회지
    • /
    • 제49권2호
    • /
    • pp.182-187
    • /
    • 2018
  • Many plant derived phytochemicals have been considered as the main therapeutic strategy against Alzheimer's disease (AD). AD is a progressive neurodegenerative disorder, and the most predominant cause of dementia in the elderly. Cholinergic deficit, senile plaque/${\beta}$-amyloid ($A{\beta}$) peptide deposition and oxidative stress have been identified as three main pathogenic pathways which contribute to the progression of AD. We screened many different plant species for their effective use in both modern and traditional system of medicines. In this study, we tested that MeOH extract of the stem bark of Hopea chinensis (Merr.) Hand.-Mazz. (HCM) affects on the processing of Amyloid precursor portein (APP) from the APPswe over-expressing Neuro2a cell line. We showed that HCM reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ in a dose dependent manner. We found that HCM increased over 1.5 folds of the secretion level of $sAPP{\alpha}$, a metabolite of ${\alpha}$-secretase. Furthermore, we found that HCM inhibited acetylcholinesterase activity in vitro. We suggest that the stem bark of Hopea chinensis may be a useful source to develop a therapeutics for AD.

현삼(玄蔘) 수추출물(水抽出物)이 아밀로이드 전구단백질(前驅蛋白質)로 형질전환(形質轉換)된 초파리에 미치는 효과 (Study of Anti-Alzheimer Activities from Scrophularia buergeriana Water Extract by Alzheimer's Protein APP-transgenic Fly)

  • 김진우;이순이;이종화;민상준;김태헌;유영수;강형원
    • 동의신경정신과학회지
    • /
    • 제20권2호
    • /
    • pp.121-131
    • /
    • 2009
  • Objectives : From Scrophularia buergeriana water extract(SBW), has been used in vivo test for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with APP-related dementias and Alzheimer's disease(AD). $A{\beta}$ oligomer derived from proteolytic processing of the ${\beta}$-amyloid precursor protein(APP), including the amyloid-${\beta}$ peptide($A{\beta}$), play a critical role in the pathogenesis of Alzheimer's dementia. Methods : Using drosophila APP model on APP-induced neuronal cytotoxicity, we demonstrated that SBW prevents neurotoxicity of $A{\beta}$ oligomer, which are the behavior, and possibly causative, feature of AD. We investigated the neuroprotective effects of SBW against the effects of oligomeric $A{\beta}$ and fly behaveior and life span by UAS-GRIM/APP-GAL within transgenic flies. Results and Conclusions : SBW repaired damage leading to the behaveior of APP-induced fly and delayed life span. These results suggest that neuronal damage in AD might be due to two factors: a direct $A{\beta}$ oligomer toxicity and multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer, underlie the neuroprotective effects of SBW.

  • PDF

Proteins as the molecular markers of male fertility

  • Beeram, Eswari
    • 식품보건융합연구
    • /
    • 제4권4호
    • /
    • pp.18-25
    • /
    • 2018
  • Proteins play a key role in many functions such as metabolic activity, differentiation, as cargos and cell fate regulators. It is necessary to know about the markers involved in male fertility in order to develop remedies for the treatment of male infertility. But, the role of the proteins is not limited to particular function in the biological systems. Some of the proteins act as ion channels such as catsper and proteins like Nanos acts as a translational repressor in germ cells and expressed in prenatal period whose role in male fertility is uncertain. Rbm5 is a pre mRNA splicing factor necessary for sperm differentiation whose loss of function results deficit in sperm production. DEFB114 is a beta defensin family protein necessary for sperm motility in LPS challenged mice where as TEX 101 is a plasma membrane specific germ cell protein whose function is not clearly known u to now. Gpr56 is another adhesion protein whose null mutation leads to arrest of production of pups in rats. Amyloid precursor protein role in Alzheimer's disease is already known but it plays an important role in male fertility also but its function is uncertain and has to be considered while targeting APP during the treatment of Alzheimer's disease. The study on amyloid precursor protein in male fertility is a novel thing but requires further study in correlation to alzheimer's disease.