DOI QR코드

DOI QR Code

Proteins as the molecular markers of male fertility

  • Beeram, Eswari (Department of Biochemistry, Sri Venkateswara University)
  • 투고 : 2018.09.21
  • 심사 : 2018.11.18
  • 발행 : 2018.12.30

초록

Proteins play a key role in many functions such as metabolic activity, differentiation, as cargos and cell fate regulators. It is necessary to know about the markers involved in male fertility in order to develop remedies for the treatment of male infertility. But, the role of the proteins is not limited to particular function in the biological systems. Some of the proteins act as ion channels such as catsper and proteins like Nanos acts as a translational repressor in germ cells and expressed in prenatal period whose role in male fertility is uncertain. Rbm5 is a pre mRNA splicing factor necessary for sperm differentiation whose loss of function results deficit in sperm production. DEFB114 is a beta defensin family protein necessary for sperm motility in LPS challenged mice where as TEX 101 is a plasma membrane specific germ cell protein whose function is not clearly known u to now. Gpr56 is another adhesion protein whose null mutation leads to arrest of production of pups in rats. Amyloid precursor protein role in Alzheimer's disease is already known but it plays an important role in male fertility also but its function is uncertain and has to be considered while targeting APP during the treatment of Alzheimer's disease. The study on amyloid precursor protein in male fertility is a novel thing but requires further study in correlation to alzheimer's disease.

키워드

참고문헌

  1. Avenarius, M.R., Hildebrand, M.S., Zhang, Y., Meyer, N.C., Smith, L.L.H., Kahrizi, K., Najmabadi, H., & Smith, R.J.H. (2009). The American Journal of Human Genetics, 84, 505-510. https://doi.org/10.1016/j.ajhg.2009.03.004
  2. Borgstahl, G.E., Parge, H.E., Hickey, M.J., Johnson, M.J., Boissinot, M., Hallewell, R.A., Lepock, J.R., Cabelli, D.E., & Tainer, J.A. (1996). Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry. 1996(35), 4287-4297
  3. Campbell, K.S., Cooper, S., Dessing, M., Yates, S., & Buder, A. (1998) Interaction of p59fyn kinase with the dynein light chain, Tctex-1, and colocalization during cytokinesis. J. Immunol., 161, 1728-1737
  4. Chen, G., Yang, L., Begum, S., & Xu, L. (2010) GPR56 Is Essential for Testis Development and Male Fertility in Mice; Dev Dyn. Author manuscript; available in PMC 239(12): 3358-3367. doi:10.1002/dvdy.22468.
  5. Dedesma, C., Chuang, J.Z., Alfinito, P.D., & Sung, C.H. (2006) Dynein light chain Tctex-1 identifies neural progenitors in adult brain. J. Comp Neurol., 496, 773-786 https://doi.org/10.1002/cne.20958
  6. Dong, H.J., Liu, A., Xin, Y.H., Shi, H., Sun, F., Zhang, Y., Lin, D., & Diao, H. (2013) The Novel Human _-Defensin 114 Regulates Lipopolysaccharide (LPS)-mediated Inflammation and Protects Sperm from Motility Loss. The journal of biological chemistry, 288(17), 12270-12282. https://doi.org/10.1074/jbc.M112.411884
  7. Fujii, J., Iuchi, Y., Matsuki, S., & Ishii T. (2003). Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues. Asian Journal of Andrology, 5(3), 231-242.
  8. Haraguchi, S., Tsuda, M., Kitajima, S., Sasaoka, Y., Nomur'za-Kitabayashid, A., Kurokawa, K., & Saga, Y. (2003). nanos1: a mouse nanos gene expressed in the central nervous system is dispensable for normal development. Mech Dev, 120, 721-731. https://doi.org/10.1016/S0925-4773(03)00043-1
  9. Harrison, A., Olds-Clarke, P., & King, S.M. (1998) Identification of the complex-encoded cytoplasmic dynein light chain tctex1 in inner arm I1 supports the involvement of flagellar dyneins in meiotic drive. J. Cell Biol., 140, 1137-1147 https://doi.org/10.1083/jcb.140.5.1137
  10. Indu, S., Sekhar, S.C., Sengottaiyan, J., Kumar, A., Pillai, S.M., Laloraya, M., Kumar, P.G. (2015) Aberrant Expression of Dynein light chain 1 (DYNLT1) is Associated with Human Male Factor Infertility. Molecular & Cellular Proteomics, 14(12), 3185-3195. https://doi.org/10.1074/mcp.M115.050005
  11. Jha, K.N., Coleman, A., Wong, R.L., Salicioni, A.M., Howcroft, E., & Johnson, G.R. (2013). Heat Shock Protein 90 Functions to Stabilize and Activate the Testis-specific Serine/Threonine Kinases, a Family of Kinases Essential for Male fertility. The journal of biological chemistry, 288(23), 16308-16320 https://doi.org/10.1074/jbc.M112.400978
  12. Kichine, E., Falco, M.D., Barbara, F.H., Robaire, B., & Chan, P. (2013) Analysis of the Sperm Head Protein Profiles in Fertile Men: Consistency across Time in the Levels of Expression of Heat Shock Proteins and Peroxiredoxins. PLOS ONE, 8(10), e77471. https://doi.org/10.1371/journal.pone.0077471
  13. King, S.M., Dillman, J.F., Benashski, S.E., Lye, R.J., Patel-King, R.S., & Pfister, K. (1996) The mouse t-complexencoded protein Tctex-1 is a light chain of brain cytoplasmic dynein. J. Biol. Chem., 271, 32281-32287 https://doi.org/10.1074/jbc.271.50.32281
  14. Kobayashi, S., Yamada, M., Asaoka, M., & Kitamura, T. (1996) Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature, 380, 708-711. https://doi.org/10.1038/380708a0
  15. Kobayashi, T., Miyazaki, T., Natori, M., & Nozawa, S. (1991). Protective role of superoxide dismutase in human sperm motility: superoxide dismutase activity and lipid peroxide in human seminal plasma and spermatozoa. Human Reproduction, 6(7), 987-991. https://doi.org/10.1093/oxfordjournals.humrep.a137474
  16. Koprunner, M., Thisse, C., Thisse, B., & Raz, E. (2001). A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev, 15, 2877-2885
  17. Kusz, K.M., Tomczyk, L., Sajek, M., Spik, A., Latos-Bielenska, A., Jedrzejczak, P., Pawelczyk, L., & Jaruzelska, J. (2009) The highly conserved NANOS2 protein: testis-specific expression and significance for the human male reproduction. Molecular Human Reproduction, 15(3), 165-171. https://doi.org/10.1093/molehr/gap003
  18. Macanovic, B., Vucetic, M., Jankovic, A., Stancic, A., Buzadzic, B., Garalejic, E., Korac, A., Korac, B., & Otasevic, V. (2015). Hindawi Publishing Corporation Disease Markers. http://dx.doi.org/10.1155/2015/436236
  19. Mochizuki, K., Sano, H., & Kobayashi, S. (2000). Nishimiya-Fujisawa C, Fujisawa T. Expression and evolutionary conservation of nanos-related genes in Hydra. Dev Genes Evol, 210,591-602 https://doi.org/10.1007/s004270000105
  20. Mosquera, L., Forristall, C., Zhou, Y., & King, M.L. (1993). A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with ananos-like zinc finger domain. Development, 117, 377-386.
  21. Mount, D.B., & Romero, M.F. (2004). The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch., 447, 710-721. https://doi.org/10.1007/s00424-003-1090-3
  22. O'Bryan, M.K., Clark, B.J., McLaughlin, E.A., D'Sylva, R.J., O'Donnell, L., Jacqueline, A., Sutherland, W.J., O'Connor, A.E., Whittle, B., Goodnow, C.C., Ormandy, C.J., & Jamsai, D. (2013) RBM5 Is a Male Germ Cell Splicing Factor and Is Required for Spermatid Differentiation and Male Fertility. PLOS Genetics, 9(7), e1003628. https://doi.org/10.1371/journal.pgen.1003628
  23. Ollero, M., Gil-Guzman, E., & Lopez, M.C. (2001). Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Human Reproduction, 16(9), 1912-1921. https://doi.org/10.1093/humrep/16.9.1912
  24. O'Neill, M. J., & Artzt, K. (1995) Identification of a germ-cell-specific transcriptional repressor in the promoter of Tctex-1. Development, 121, 561-568
  25. Padron, O.F., Lynne, C.M., Brackett, N. L., Thomas Jr A.J., Sharma, R. K., & Agarwal, A. (1997). Seminal reactive oxygen species and sperm motility and morphology in men with spinal cord injury. Fertility and Sterility, 67(6), 1115-1120. https://doi.org/10.1016/S0015-0282(97)81448-3
  26. Pilon, M., & Weisblat, D.A. (1997). A nanos homolog in leech. Development, 124, 1771-1780.
  27. Rahman, M. S., Kwon, W. S., and Pang, M. G. (2014). Calcium Influx and Male Fertility in the Context of the Sperm Proteome: An Update. BioMed Research International, 2014(2), 175-185
  28. Sato-Carlton, A., Li, X., Crawley, O., Testori, S., Martinez-Perez, E., Sugimoto, A., & Carlton, P.M. (2014). Protein Phosphatase 4 Promotes Chromosome Pairing and Synapsis, and Contributes to Maintaining Crossover Competence with Increasing Age. PLOS Genetics, 10(10), e1004638. https://doi.org/10.1371/journal.pgen.1004638
  29. Schiza, C.G., Jarvi, K., Diamandis, E., & Drabovich, A.P. (2014) An emerging role of TEX101 protein as a male infertility biomarker. eJIFCC, 25(1), 9-26
  30. Silva, J.V., Yoon, S., Domingues, S., Guimaraes, S., Goltsev, A.V., Silva, E.F.C., Mendes, J.F.F., & Fardilha, M. (2015) Amyloid precursor protein interaction network in human testis: sentinel proteins for male reproduction. BMC Bioinformatics ,16(12). DOI: 10.1186/s12859-014-0432-9.
  31. Spiridonov, N.A., Wong, L., Zerfas, P.M., Starost, M.F., Pack, S.D., Paweletz, C.P., & Johnson, G.R. (2005) Identification and Characterization of SSTK, a Serine/Threonine Protein Kinase Essential for Male Fertility. Molecular and Cellular Biology, 25, 4250-4261. https://doi.org/10.1128/MCB.25.10.4250-4261.2005
  32. Subramaniam, K., & Seydoux, G. (1999). nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development, 126, 4861-4871.
  33. Tai, A.W., Chuang, J.Z., & Sung, C.H. (1998) Localization of Tctex-1, a cytoplasmic dynein light chain, to the Golgi apparatus and evidence for dynein complex heterogeneity. J. Biol. Chem., 273, 19639-19649 https://doi.org/10.1074/jbc.273.31.19639
  34. Toure, A., Lhuillier, P., Gossen, J.A., Kuil, C.W., Lhote, D., Jegou, B., Escalier, D., & Gacon, G. (2007). Human Molecular Genetics, 16(15), 1783-1793. https://doi.org/10.1093/hmg/ddm117
  35. Tsuda, M., Sasaoka, Y., Kiso, M., Abe, K., Haraguchi, S., Kobayashi, S., & Saga, Y. (2003). Conserved role of nanos proteins in germ cell development. Science, 301, 1239-1241. https://doi.org/10.1126/science.1085222
  36. Yona, S., Lin, H.H., Siu, W.O., Gordon, S., & Stacey, M. (2008). Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem Sci., 33, 491-500. https://doi.org/10.1016/j.tibs.2008.07.005
  37. Yu, H., Diao, H., Dong, J., Gu, Y., Liu, H., Xin, A., Shi, H., Sun, F., Zhang, Y., and Lin, D. (2013). The novel human $\beta$-defensin 114 regulates lipopolysaccharide (LPS)-mediated inflammation and protects sperm from motility loss. Journal of Biological Chemistry, 28(17), 12270-12282.