• Title/Summary/Keyword: bessel functions

Search Result 119, Processing Time 0.02 seconds

EXTENDED WRIGHT-BESSEL FUNCTION AND ITS PROPERTIES

  • Arshad, Muhammad;Mubeen, Shahid;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.143-155
    • /
    • 2018
  • In this present paper, our aim is to introduce an extended Wright-Bessel function $J^{{\lambda},{\gamma},c}_{{\alpha},q}(z)$ which is established with the help of the extended beta function. Also, we investigate certain integral transforms and generalized integration formulas for the newly defined extended Wright-Bessel function $J^{{\lambda},{\gamma},c}_{{\alpha},q}(z)$ and the obtained results are expressed in terms of Fox-Wright function. Some interesting special cases involving an extended Mittag-Leffler functions are deduced.

ERTAIN k-FRACTIONAL CALCULUS OPERATORS AND IMAGE FORMULAS OF GENERALIZED k-BESSEL FUNCTION

  • Agarwal, P.;Suthar, D.L.;Tadesse, Hagos;Habenom, Haile
    • Honam Mathematical Journal
    • /
    • v.43 no.2
    • /
    • pp.167-181
    • /
    • 2021
  • In this paper, the Saigo's k-fractional integral and derivative operators involving k-hypergeometric function in the kernel are applied to the generalized k-Bessel function; results are expressed in term of k-Wright function, which are used to present image formulas of integral transforms including beta transform. Also special cases related to fractional calculus operators and Bessel functions are considered.

NORMALIZED DINI FUNCTIONS CONNECTED WITH k-UNIFORMLY CONVEX AND k-STARLIKE FUNCTIONS

  • ECE, SADETTIN;EKER, SEVTAP SUMER;SEKER, BILAL
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.717-723
    • /
    • 2021
  • The purpose of the present paper is to give sufficient conditions for normalized Dini function which is the special combination of the generalized Bessel function of first kind to be in the classes k-starlike functions and k-uniformly convex functions.

GEOMETRIC PROPERTIES OF GENERALIZED DINI FUNCTIONS

  • Deniz, Erhan;Goren, Seyma
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.101-116
    • /
    • 2019
  • In this paper our aim is to establish some geometric properties (like starlikeness, convexity and close-to-convexity) for the generalized and normalized Dini functions. In order to prove our main results, we use some inequalities for ratio of these functions in normalized form and classical result of Fejer.

ON THE CONJUGATE DARBOUX-PROTTER PROBLEMS FOR THE TWO DIMENSIONAL WAVE EQUATIONS IN THE SPECIAL CASE

  • Choi, Jong-Bae;Park, Jong-Yeoul
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.681-692
    • /
    • 2002
  • In the article [2], the conjugate Darboux-Protter problem Dn is formulated for the two dimensional wave equation in the class of unbounded functions and the uniqueness of solutions has been established. In this paper, we shall show the existence of solutions for the hyperbolic equations with Bessel operators in another special case.

COMPLETE MONOTONICITY OF A DIFFERENCE BETWEEN THE EXPONENTIAL AND TRIGAMMA FUNCTIONS

  • Qi, Feng;Zhang, Xiao-Jing
    • The Pure and Applied Mathematics
    • /
    • v.21 no.2
    • /
    • pp.141-145
    • /
    • 2014
  • In the paper, by directly verifying an inequality which gives a lower bound for the first order modified Bessel function of the first kind, the authors supply a new proof for the complete monotonicity of a difference between the exponential function $e^{1/t}$ and the trigamma function ${\psi}^{\prime}(t)$ on (0, ${\infty}$).

GENERATING RELATIONS INVOLVING 3-VARIABLE 2-PARAMETER TRICOMI FUNCTIONS USING LIE-ALGEBRAIC TECHNIQUES

  • Khan, Subuhi;Khan, Mumtaz Ahmad;Khan, Rehana
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1277-1292
    • /
    • 2009
  • This paper is an attempt to stress the usefulness of the multivariable special functions. In this paper, we derive generating relations involving 3-variable 2-parameter Tricomi functions by using Lie-algebraic techniques. Further we derive certain new and known generating relations involving other forms of Tricomi and Bessel functions as applications.

CERTAIN FRACTIONAL INTEGRALS AND IMAGE FORMULAS OF GENERALIZED k-BESSEL FUNCTION

  • Agarwal, Praveen;Chand, Mehar;Choi, Junesang;Singh, Gurmej
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.423-436
    • /
    • 2018
  • We aim to establish certain Saigo hypergeometric fractional integral formulas for a finite product of the generalized k-Bessel functions, which are also used to present image formulas of several integral transforms including beta transform, Laplace transform, and Whittaker transform. The results presented here are potentially useful, and, being very general, can yield a large number of special cases, only two of which are explicitly demonstrated.

FRACTIONAL INTEGRATION AND DIFFERENTIATION OF THE (p, q)-EXTENDED BESSEL FUNCTION

  • Choi, Junesang;Parmar, Rakesh K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.599-610
    • /
    • 2018
  • We aim to present some formulas for Saigo hypergeometric fractional integral and differential operators involving (p, q)-extended Bessel function $J_{{\nu},p,q}(z)$, which are expressed in terms of Hadamard product of the (p, q)-extended Gauss hypergeometric function and the Fox-Wright function $_p{\Psi}_q(z)$. A number of interesting special cases of our main results are also considered. Further, it is emphasized that the results presented here, which are seemingly complicated series, can reveal their involved properties via those of the two known functions in their respective Hadamard product.

ON INTEGRAL OPERATORS INVOLVING THE PRODUCT OF GENERALIZED BESSEL FUNCTION AND JACOBI POLYNOMIAL

  • KHAN, WASEEM A.;GHAYASUDDIN, M.;SRIVASTAVA, DIVESH
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.5_6
    • /
    • pp.397-409
    • /
    • 2018
  • The aim of this research note is to evaluate two generalized integrals involving the product of generalized Bessel function and Jacobi polynomial by employing the result of Obhettinger [2]. Also, by mean of the main results, we have established an interesting relation in between $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ and Srivastava and Daoust functions. Some interesting special cases of our main results are also indicated.