• Title/Summary/Keyword: bentonite

Search Result 772, Processing Time 0.049 seconds

Evaluation of thermal-hydro-mechanical behavior of bentonite buffer under heating-hydration condition at disposal hole (처분공 가열-수화 조건에서 벤토나이트 완충재의 열-수리-역학적 거동 특성 평가)

  • Yohan Cha;Changsoo Lee;Jin-Seop Kim;Minhyeong Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.175-186
    • /
    • 2023
  • The buffer materials in disposal hole are exposed to the decay heat from spent nuclear fuels and groundwater inflow through adjacent rockmass. Since understanding of thermal-hydro-mechanical-chemical (T-H-M-C) interaction in buffer material is crucial for predicting their long-term performance and safety of disposal repository, it is necessary to investigate the heating-hydration characteristics and consequent T-H-M-C behavior of the buffer materials under disposal conditions considering geochemical factors. In response, the Korea Atomic Energy Research Institute developed a laboratory-scale 'Lab.THMC' experiment system, which characterizes the T-H-M behavior of buffer materials under different geochemical conditions by analyzing heating-hydration process and stress changes. This technical report introduces the detail design of the Lab.THMC system, summarizes preliminary experimental results, and outlines future research plans.

Evaluation of Hydraulic Conductivity of Slurry-wall-type Vertical Cutoff Wall with Consideration of Filter Cake (필터케이크(filter cake)를 고려한 슬러리월 연직차수벽의 현장투수계수 평가)

  • Nguyen, The Bao;Lee, Chul-Ho;Choi, Hang-Seok;Kim, Sang-Gyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.121-131
    • /
    • 2008
  • In constructing a slurry trench cutoff wall, bentonite-water slurry is used to secure the stability of sidewalls during excavation before the wall is completed by backfilling. Unexpectedly, a thin but relatively impermeable layer called filter cake can be formed on the excavation surface, which significantly influences the result of slug test analysis in the cutoff wall if not considered. This study is to examine the effect of filter cake on evaluating hydraulic conductivity of the vertical cutoff wall through slug test analysis with the aid of the verified numerical program Slug_3D. The no-flux boundary conditions were adopted in Slug_3D to simulate the filter cake on the interface between the wall and the natural soil. A new set of type curves were built for applying the type curve method. New modification factors were obtained for using the modified line-fitting method. With consideration of filter cake, the type curve method and the modified line-fitting method were adopted to reanalyze the case study taken from EMCON (1995). The previous results achieved by Choi and Daniel (2006) without consideration of filter cake were compared with the present results obtained in this paper. The comparison emphasizes the necessity of considering filter cake when analyzing slug test results in vertical cutoff walls.

A study on the Consolidation Characteristic of Cohesive Soil by Plastic Index (소성지수에 따른 점성토의 압밀특성에 관한 연구)

  • Kim, Chan-Kee;Cho, Won-Beom;Lee, Seung-Lun;Choi, Woo-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.99-109
    • /
    • 2008
  • The standard consolidation tests using the incremental loading technique test (IL) were performed on remolded normal consolidation and undisturbed clay samples to find out the effects of plastic index and loading period on consolidation in this study. The remolded samples used were prepared by mixing Gunsan-Samangum clay with bentonite so that they may have plasticity indexes of 15, 30, 45, and 60%, respectively. The undisturbed clay samples were collected from Inchon, Kwangyang, and Uoolsan. The samples were tested at the condition of 4 different loading periods (1, 2, 4, and 8 days). Settlement, coefficient of consolidation, compression index, secondary compression index, and pore water pressure characteristics were investigated from the plastic index and loading period aspects, and the compression index, coefficient of consolidation, and secondary compression index were formulated in terms of the plastic index and loading. To verify the applicability of proposed equations, the settlements obtained from Terzaghi's theory, modified Cam-Clay model (elasto-plastic model), and the Sekiguchi model (elasto-viscoplastic mode) were compared with the test results. The comparison indicates that the Sekiguchi model incorporating the secondary consolidation characteristic well predicts the results.

High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite

  • Jongyoul Lee;Kwangil Kim;Inyoung Kim;Heejae Ju;Jongtae Jeong;Changsoo Lee;Jung-Woo Kim;Dongkeun Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1540-1554
    • /
    • 2023
  • To use nuclear energy sustainably, spent nuclear fuel, classified as high-level radioactive waste and inevitably discharged after electricity generation by nuclear power plants, must be managed safely and isolated from the human environment. In Korea, the land area is limited and the amount of high-level radioactive waste, including spent nuclear fuels to be disposed, is relatively large. Thus, it is particularly necessary to maximize disposal efficiency. In this study, a high-efficiency deep geological repository concept was developed to enhance disposal efficiency. To this end, design strategies and requirements for a high-efficiency deep geological repository system were established, and engineered barrier modules with a disposal canister for pressurized water reactor (PWR)-type and pressurized heavy water reactor type Canada deuterium uranium (CANDU) plants were developed. Thermal and structural stability assessments were conducted for the repository system; it was confirmed that the system was suitable for the established strategies and requirements. In addition, the results of the nuclear safety assessment showed that the radiological safety of the new system met the Korean safety standards for disposal of high-level radioactive waste in terms of radiological dose. To evaluate disposal efficiency in terms of the disposal area, the layout of the developed disposal areas was assessed in terms of thermal limits. The estimated disposal areas were 2.51 km2 and 1.82 km2 (existing repository system: 4.57 km2) and the excavated host rock volumes were 2.7 Mm3 and 2.0 Mm3 (existing repository system: 4.5 Mm3) for thermal limits of 100 ℃ and 130 ℃, respectively. These results indicated that the area and the excavated volume of the new repository system were reduced by 40-60% compared to the existing repository system. In addition, methods to further improve the efficiency were derived for the disposal area for deep geological disposal of spent nuclear fuel. The results of this study are expected to be useful in establishing a national high-level radioactive waste management policy, and for the design of a commercial deep geological repository system for spent nuclear fuels.

Analysis on Design Change for Backfilling Solution of the Disposal Tunnel in the Deep Geological Repository for High-Level Radioactive Waste in Finland (핀란드 고준위방사성폐기물 심층처분시설 처분터널 뒤채움 설계 변경을 위한 연구사례 분석)

  • Heekwon Ku;Sukhoon Kim;Jeong-Hwan Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.435-444
    • /
    • 2023
  • In the licensing application for the deep geological disposal system of high-level radioactive waste in Finland, the disposal tunnel backfilling has been changed from the block/pellet (for the construction) to the granular type (for the operation). Accordingly, for establishing the design concept for backfilling, it is necessary to examine applicability to the domestic facility through analyzing problems of the existing method and improvements in the alternative design. In this paper, we first reviewed the principal studies conducted for changing the backfill method in the licensing process of the Finnish facility, and identified the expected problems in applying the block/pellet backfill method. In addition, we derived the evaluation factors to be considered in terms of technical and operational aspects for the backfilling solution, and then conducted a comparative analysis for two types of backfill methods. This analysis confirmed the overall superiority of the design change. It is expected that these results could be utilized as the technical basis for deriving the optimum design plan in development process of the Korean-specific deep disposal facility. However, applicability should be reviewed in advance based on the latest technical data for the detailed evaluation factors that must be considered for selecting the backfilling method.

Effect of Fly Ash Fertilizer on Paddy Soil Quality and Rice Growth (비산재로 제조한 비료가 논토양 질과 벼 생육에 미치는 영향)

  • Oh, Se Jin;Yun, Hyun Soo;Oh, Seung Min;Kim, Sung Chul;Kim, Rog Young;Seo, Yung Ho;Lee, Kee Suk;Ok, Yong Sik;Yang, Jae E.
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • Coal ash can be added to agricultural soils to increase the chemical properties of soil such as pH, cation exchange capacity and nutrient availability of - B, Ca, Mo etc-. Therefore, the main purpose of this study was to evaluate the feasibility of fly ash as a soil amendment in paddy soils. Selected fly ash was mixed with bentonite and calcium hydroxide at the ratio of 80:15:5 (w/w) and manufactured as a pellet type at the size of 10 mm. Field experiments were conducted to evaluate the effects of fly ash fertilizer on the soil quality and crop growth compare to the control (no fertilizer) and, - traditional fertilizer. Results showed that soil pH and organic matter in paddy soils after applying the manufactured fly ash fertilizer were not increased compared to the other two treatments. However, the concentration of available phosphate and silicate in paddy soils were higher than those of the control and traditional fertilization. With regard to crop growth, no significant difference was observed between three different treatments. However, the content of protein in the rice grain cultivated with the fly ash fertilizer was higher than in the rice cultivated by other two treatments. Overall, fly ash fertilizer could increase the concentration of available silicate and phosphate in the paddy soil and improve the rice quality. In conclusion, fly ash can be utilized in agricultural soils as soil amendment, especially in the rice paddy soil.

Analysis of the Thermal and Structural Stability for the CANDU Spent Fuel Disposal Canister (CANDU 처분용기의 열적-구조적 안정성 평가)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kim, Seong-Gi;Choi, Heui-Joo;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.217-224
    • /
    • 2008
  • In deep geological disposal system, the integrity of a disposal canister having spent fuels is very important factor to assure the safety of the repository system. This disposal canister is one element of the engineered barriers to isolate and to delay the radioactivity release from human beings and the environment for a long time so that the toxicity does not affect the environment. The main requirement in designing the deep geological disposal system is to keep the buffer temperature below 100$^{\circ}C$ by the decay heat from the spent fuels in the canister in order to maintain the integrity of the buffer material. Also, the disposal canister can endure the hydraulic pressure in the depth of 500 m and the swelling pressure of the bentonite as a buffer. In this study, new concept of the disposal canister for the CANDU spent fuels which were considered to be disposed without any treatment was developed and the thermal stability and the structural integrity of the canister were analysed. The result of the thermal analysis showed that the temperature of the buffer was 88.9$^{\circ}C$ when 37 years have passed after emplacement of the canister and the spacings of the disposal tunnel and the deposition holes were 40 m and 3 m, respectively. In the case of structural analysis, the result showed that the safety factors of the normal and the extreme environment were 2.9 and 1.33, respectively. So, these results reveal that the canister meets the thermal and the structural requirements in the deep geological disposal system.

  • PDF

Mineral Chemistry and Geochemistry of the Bentonites Intercalated within the Basal Conglomerates of the Tertiary Sediments in Korea and Their Stratigraphical Implication (제3기층 기저역암에 협재되는 벤토나이트의 광물학, 지화학적 연구 및 층서적 적용)

  • 이종천;이규호;문희수
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.13-23
    • /
    • 2001
  • Bentonite layers are intercalated within the basal conglomerates in the Tertiary sedimentary basins of Kampo, Janggi and Pohang, southeastern Korea. Eighteen samples of the bentonites went through X-ray diffraction, scanning electron microscopy, heavy mineral analyses, chemical analyses and oxygen, hydrogen stable isotope analyses to define the mineralogical characters of the bentonites. Heavy minerals such as zircons, apatites, amphiboles and biotites separated from bentonites show clean and euhedral surfaces, which are the characteristic features of volcanic origin. But biotites from the Chunbook Conglomerate are found as altered and heavily broken flakes which implies longer transportation of these bentonites. $TiO_{2}/Al_{2}O_{3} ratios of <2 $\mu$m particle fractions (the Chunbook Conglomerate 0.031; Janggi 0.029; Kampo 0.025) suggest that those are originated from volcanic tuffs. That is, the higher the value is, the more mafic in chemical compositions of the original tuffs. Authigenic montmorillonite and zeolite minerals were observed by SEM, which indicates diagenesis origin of bentonites. But the samples from the Chunbook Conglomerate showed only chaotically packed clay flakes in the matrix of sands or conglomerates, which implies detrital influence, not authigenic origin. The structural formulae of montmorillonite from these basins reflects their environment of formation. Fe (Ⅵ) can show the redox condition of its past environment and much lower $Fe^{2+}(Ⅵ)/Fe^{3+}(Ⅵ)$ ratios in montmorillonite of the Chunbook Conglomerate imply the greater oxidizing influence. Calculated burial depths from oxygen stable isotope data of the samples from the Chunbook Conglomerate generally fall to the range of 929~963 m whereas the real burial depth of this area is only 530~580 m. This could be explained as the bentonites of the Chunbook conglomerate had not been formed in situ. Discriminant analyses with the data from chemical analyses and structural formulae of montmorillonites show that bentonites from three different basins could definitely be distinguished with each other. This result arises from the different chemical compositions of original volcanic ashes and the difference of sedimentary environments.

  • PDF

Mineralogy and Genesis of Bentonites from the Tertiary Formations in Geumgwangdong Area, Korea (제(第)3기층(紀層)에 부존(賦存)하는 점토광물(粘土鑛物)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Kim, Soo Jin;Noh, Jin Hwan;Yu, Jae Young
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.399-410
    • /
    • 1985
  • Bentonites from the Janggi Group of the Lower Miocene age from the Geumgwangdong area, Korea, have been studied for mineralogical and genetic characterization. The Janggi Group is subdivided, in ascending order, into the Janggi Conglomerate, the Nuldaeri Tuff, the Geumgwangdong Shale, the Lower Coal-bearing Formation, the Basaltic Tuff, and the Upper Coalbearing Formation. Bentonites occur as thin or thick beds in all sedimentary units of the Janggi Group, except for the Janggi Conglomerate. Significant bentonite deposits are found in the Nuldaeri Tuff, the Lower Coal-bearing Formation and the Basaltic Tuff. Bentonites consist mainly of smectite (mainly montmorillonite), with minor quartz, cristobalite, opal-CT and feldspar. Occasionally, kaolinite, clinoptilolite or gypsum is associated with bentonites. Bentonites were studied by the methods of petrographic microscopy, X-ray diffraction, thermal analysis (DT A and TG), infrared absorption spectroscopic analysis, SEM, intercalation reaction, and chemical analysis. Smectites commonly occur as irregular boxwork-like masses with characteristic curled thin edges, but occasionally as smoothly curved to nearly flat thin flakes. Most of smectites have layer charge of 0.25-0.42, indicating typical montmorillonite. Crystal-chemical relations suggest that Fe is the dominant substituent for Al in the octahedral layer and there are generally no significant substituents for Si in the tetrahedral layer. Ca is the dominant interlayer cation in montmorillonite. Therefore, montmorillonite from the study area is dioctahedral Ca-montmorillonite. Occurrence and fabrics of bentonites suggest that smectites as well as cristobalite, opal-CT and zeolites have been formed diagenetically from tuffaceous materials. The precursor of smectites is trachytic or basaltic tuff. Smectites derived from the former contain relatively more $Al_2O$ a and less $Fe_2O_3$ than those from the latter.

  • PDF

Behaviors of Arsenic in Paddy Soils and Effects of Absorbed Arsenic on Physiological and Ecological Characteristic of Rice Plant;IV. Effect of As content in water on transpiration, stomatal resistance, temperature and humidity in the leaves of rice plant (토양중(土壤中) 비소(砒素)의 행동(行動)과 수도(水稻)의 비소흡수(砒素吸收)에 의(依)한 피해(被害) 생리(生理) 생태(生態)에 관한 연구(硏究);IV. 수경시험(水耕試驗)에서 비소처리(卑小處理)가 수도(水稻)의 증산(蒸散), 기공저항성(氣孔抵抗性) 및 엽(葉)의 온(溫), 습도(濕度)에 미치는 영향(影響))

  • Lee, Min-Hyo;Lim, Soo-Kil-H;Kim, Bok-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.2
    • /
    • pp.39-45
    • /
    • 1987
  • A water culture experiment was conducted to investigate the effect of As content in a culture solution on the water status and growth of rice plants. Rice (Oryza sativa L. Line. Iri 316) seeds were germinated in bentonite and cultivated there for 30 days. Rice seedlings were transplanted into 3.5l pots containing the culture solution on May 1, 1985 and allowed to grow without As treatment for one month. Afterwards, they were grown in a culture solution maintaining the final concentration of As, 0, 1, 5, 10 and 15mg/1 renewing in the solution dissolved sodium arsenate at intervals of 3 to 7 days. Plants were cultivated in the green house during the growing period and harvested 60 days after As treatment. The results obtained were as follows: Transpiration of rice plants was decreased with the increase of the As level in the culture solution. Stomatal diffusive resistance and leaf temperature increased with increase of As levels though the humidity and the air flow rate in leaf decreased. Air flow rate, transpiration and stomatal diffusive resistance showed a highly significant correlation with As contents in shoots and roots of rice plants: Espally The air flow rate and transpiration revealed a significantly higher correlation with As contents in the root than that in the shoot, but diffusive resistance showed adverse tendency. High levels of As in the culture solution depressed plant height, no. of tillers, leaf width and dry weight of plant remarkably. Typical symptoms of As toxicity were root discoloration, and necrosis of leaf tips and margins, and leaf rolling during the sunny daytime were also another symptoms.

  • PDF