• Title/Summary/Keyword: bending load test

Search Result 591, Processing Time 0.028 seconds

Study on the Prediction of the Work-Energy to the Maximum Load and Impact Bending Energy from the Bending Properties (국산 소경재의 휨 성질을 이용한 충격에너지와 최대하중까지 일-에너지 예측연구)

  • Cha, Jae-Kyung
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.5
    • /
    • pp.350-357
    • /
    • 2008
  • This research investigates the bending properties to predict the work-energy to maximum load and impact bending energy from static bending and impact bending test. Specimens were prepared from lumber made of thinning crop-trees. Matched specimens were used for MC 12% and green moisture specimens to measure the effect of moisture content on the absorbed energy from static and impact bending tests. The bending properties such as MOE, MOR, etc. is a good predictor to investigate the work-energy and work-energy per unit volume from static bending and impact bending test. The impact bending energy is increased with increasing moisture content. However, the work to maximum load from static bending test is increasing with increasing the MC only for higher density species.

  • PDF

An Experimental Study on the Bending Process of Stainless Steel Sheets (스테인리스 판재의 굽힘공정에 관한 실험적 연구)

  • Kim, Ho-Yoon;Hwang, Bum-Cheal;Bae, Won-Byong;Kang, Chung-Gil;Byun, Cheon-Deock
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.82-86
    • /
    • 1999
  • An experimental study has been carried out to reduce bending load, surface roughness and springback in bending process of stainless steel sheets. A U-bending test has been performed to investigate appropriate process parameters for getting better surfaces and accurate dimensions of stainless steel products. In the test, selected process parameters are die material, lubricant, and die clearance. Die materials used in the test are STD11(HRC60), STD11(TiCN), and AMPCO. From the test results, we can suggest that AMPCO dies are most suitable for reducing bending load and surface roughness of stainless steel sheets. And STD11 dies are favorable for avoiding spring-back in the stainless steel sheet-bending.

  • PDF

A Study on the Local Buckling Collapse Behavior of an Aluminum Square Tube Beam under a Bending Load (굽힘하중을 받는 알루미늄 사각관 보의 국부적 좌굴붕괴 거동에 관한 연구)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2011-2018
    • /
    • 2003
  • To analyze the bending collapse behavior of an aluminum square tube beam under a bending load, a finite element simulation for the four-point bending test has been performed. Using an aluminum tube beam specimen partly inserted with two steel bars, the local buckling deformation near the center of the tube beam was induced. The maximum bending load and the bending collapse behavior obtained from the numerical simulation were in good agreement with experimental results. Using a combination of the four-point bending test and its finite element simulation, analysis of the local buckling and the accompanied bending collapse behavior of aluminum tube beam could be quantitative accomplished.

A study on reduction of pre-crack deviation in CTOD specimen using reverse bending method (Reverse Bending을 통한 CTOD 시험 예비균열 형상균일화에 관한 연구)

  • Jeong, Sehwan;Park, Dong-Hwan;Kim, Hyeon-Su;Shin, Sang-Beom;Park, Tae-Jong
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • This study investigates the appropriate range of reverse bending load for the CTOD test of thick weld by observing improvement of pre-crack shape and determination of the limit applicable load. In order to do it, the effect of the amount of the reverse bending load on the maximum deviation of the pre-crack length was investigated by the extensive tests, and the variation of plastic zone size in way of the crack tip under reverse bending load were evaluated by FEA. With the results obtained by the experiments and FEA, the proper range of reverse bending load was suggested. The effectiveness of the reverse bending method was verified by examining the pre-crack straightness after CTOD tests of thick weld specimens with various thickness and strength.

An Experimental Study in Rectangular High Strength Concrete Columns under Both Axial Load and Biaxial Bending (2축 편심 축하중을 받는 직사각형 고강도 RC기둥의 거동에 대한 실험적연구)

  • 이종원;조문희;한경돈;유석형;반병열;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.209-214
    • /
    • 2001
  • Most reinforce concrete Columns of Building structure are subjected to both axial load and biaxial bending. However, It is hard to estimate the moment capacity of biaxial bending by exact solution. Thus, columns under biaxial bending are designed by approximate methods in practice. The purpose of this study is to compare experimental result with approximate methods and exact solution by computer. Parameters of the present test are compressive strength of concrete (350, 585, 650kgf/$\textrm{cm}^2$) and shape ratio of rectangular section. Ultimately, an experimental shape factor for rectangular RC column section is obtained through the test program. The shape of load contour is dominated by this shape factor obtained experimentally. So, reasonable design of RC columns subjected to both axial compression and biaxial bending depends on load contour.

  • PDF

Performance Monitoring and Load Analysis of Wind Turbine (풍력발전기의 성능 모니터링 및 하중분석)

  • Bae, Jae-Sung;Kim, Sung-One;Youn, Joung-Eun;Kyung, Nam-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.385-389
    • /
    • 2004
  • Test facilities for the wind turbine performance monitoring and mechanical load measurements are installed in Vestas 100 kW wind turbine in Wollyong test site, Jeju island. The monitoring system consists of Garrad-Hassan T-MON system, telemetry system for blade load measurement, various sensors such as anemometer, wind vane, strain gauge, power meter, and etc. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the established monitoring system, the wind turbine is remotely monitored. From the measured load data, the load analysis has been performed to obtain the load power spectral density and the fatigue load spectra of the wind turbine.

  • PDF

Burst Test and Finite Element Analysis for Failure Pressure Evaluation of Nuclear Power Plant Pipes (원전 배관 손상압력 평가를 위한 파열시험 및 유한요소해석)

  • Yoon, Min Soo;Kim, Sung Hwan;Kim, Taesoon
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.144-149
    • /
    • 2015
  • This study aims to quantitatively evaluate failure pressure of wall-thinned elbow under combined load along with internal pressure, by conducting real-scale burst test and finite element analysis together. For quantitative evaluation, failure pressure data was extracted from the real-scale burst test first, and then finite element analysis was carried out to compare with the test result. For the test, the wall-thinning defect of the extrados or intrados inside the center of 90-degree elbow was considered and the loading modes to open or close the specimen maintaining a certain load or displacement were applied. Internal pressure was applied until failure occurred. As a result, when the bending load was applied under the load control condition, the intrados of the defect was more affected by failure pressure than the extrados, and the opening mode was more vulnerable to failure pressure than the closing mode. When the bending load was applied under the displacement control, it was hardly affected by failure pressure though it was slightly different from the defect position. The result of the finite element analysis showed a similar aspect with the test. Moreover, when major factors such as material properties and pipeline thickness were calibrated to accurate values, the analytical results was more similar to the test results.

Experimental Verification of Set-Up Reference Values for the Determination of Downcoiling Tension in Hot Strip Mill (열간압연시 권취장력 설정기준치의 실험적 검증)

  • 공성락;강용기;김영환;문영훈
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • Set-up reference values, used in determining the optimum downcoiling tension, we experimentally verified in this study. During the actual downcoiling, the strip suffers both tension and bending force through the rotation of mandrel. Therefore, simulative test which can measure both tension and bending resistance of strip was performed to estimate set-up reference value for strip tension during downcoiling operations. The values obtained from the simulative test were correlated with the yield stress which has conventionally been used as reference values for downcoiling tension. The correlative analysis showed that the yield stress of strip can be a good reference value for downcoiling tension. Furthermore, the bending load also shows strong correlation with simulated values due to the close relationship between yield stress and bending load.

  • PDF

Load Measurements of 100 kW Wind Turbine (100 kW급 풍력발전기의 하중 측정)

  • Bae, Jae-Sung;Kim, Sung-One;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.27-33
    • /
    • 2004
  • Mechanical load measurements on blade and tower of Vestas 100 kW wind turbine has been reformed in Wollyong test site, Jeju island. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. The test facilities consisting of strain-gauges, telemetry and T-Mon system are installed in the wind turbine. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the test setup, the loads on the components are being measured and analysed for various external conditions of the wind turbine. A set of results for near rated wind speed has been presented in this paper.

The Bending Strength and Acoustic Emissions Properties of Sloped Finger-Jointed Rhus Verniciflua (옻나무 경사핑거접합재의 휨강도와 AE 특성)

  • 변희섭;김사익
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.2
    • /
    • pp.73-78
    • /
    • 1999
  • This paper describes the relationship between the bending strength properties of sloped finger-jointed woods and the acoustic emissions(AEs) generated during the test. Rhus verniciflua pieces were cut in sloped-finger types and glued with three kinds of adhesives(polyvinyl acetate, polyvinyl-acryl acetate and oilic urethane resin). The slope ratios of finger joints were 0, 1.0, 1.5, and 2.0. The AE cumulative event count and cumulative count were measured during the bending test. The results were as follows: The lower the bending strength(load) was, the generation time of AE event count got and the higher the increasing rate of AE event count became in the sloped finger-jointed specimens bonded with polyvinyl acetate, polyvinyl-acryl acetate oilic urethane resin adhesives. Therefore, the slope from load-AE cumulative event count was very steep. The patterns of AE event count and count were very similar. The relationship between the MOR and the AE parameter from load and AE cumulatve event count in the early stage of the sloped finger-jointed specimens bonded with polyvinyl acetate, polyvinyl-acryl and oilic urethane resin adhesives was much greater than that between the MOE and the MOR. Therefore, the AE signals obtained during bending test are useful for estimating the strength of sloped finger-jointed Rhus verniciflua specimens.

  • PDF