• 제목/요약/키워드: bending connection

검색결과 234건 처리시간 0.028초

고력볼트 인장접을 갖는 합성상판의 이음구조에 관한 연구 (The Study of joint structure of composite slabs with the tensile grip connection)

  • 서성탁
    • 한국산업융합학회 논문집
    • /
    • 제9권3호
    • /
    • pp.215-220
    • /
    • 2006
  • Recently, steel-concrete composite slab decks have been widely used as highway bridge decks. In the construction of the composite slab decks, it is necessary to join two adjacent blocked bottom plates to form one unite in the longitudinal direction. In this paper, several types of longitudinal direction joints for Robinson type composite slab decks ared proposed herein and static bending test are carried out by using slab specimens. And the stress and deformation of the tensile grip connection with high strength bolts are discussed by using three-dimensional elastic-plastic FEM.

  • PDF

C형 접합부를 이용한 프리캐스트 전단벽 시스템에 관한 연구 (Precast Shear Wall Systems with C Type Connections)

  • 홍성걸;임우영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.217-224
    • /
    • 2006
  • This thesis investigates the behavior of precast wall systems with a new vertical connection which are proportioned by the displacement based design. The proposed precast wall systems are supposed to provide additional spaces and seismic strengthening in remodeling existing residential buildings. For a fast remodeling constructions using PC wails require an efficient, economic fabrication method. A C-type vertical connections for PC wall systems is proposed for transfer of bending moment between walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing. The proposed vertical connection allows us easy fabrication because of different direction of slots at the edges of wall. The dimension of C-type connection components are determined by engineering models and a series of test.

  • PDF

Cyclic testing of steel column-tree moment connections with various beam splice lengths

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keunyeong;Kim, Kang-Seok
    • Steel and Composite Structures
    • /
    • 제16권2호
    • /
    • pp.221-231
    • /
    • 2014
  • The purpose of this study was to evaluate the cyclic behavior of steel column-tree moment connections used in steel moment resisting frames. These connections are composed of shop-welded stub beam-to-column connection and field bolted beam-to-beam splice. In this study, the effects of beam splice length on the seismic performance of column-tree connections were experimentally investigated. The change of the beam splice location alters the bending moment and shear force at the splice, and this may affect the seismic performance of column-tree connections. Three full-scale test specimens of column-tree connections with the splice lengths of 900 mm, 1,100 mm, and 1,300 mm were fabricated and tested. The splice lengths were roughly 1/6, 1/7, 1/8 of the beam span length of 7,500 mm, respectively. The test results showed that all the specimens successfully developed ductile behavior without brittle fracture until 5% radians story drift angle. The maximum moment resisting capacity of the specimens showed little differences. The specimen with the splice length of 1,300 mm showed better bolt slip resistance than the other specimens due to the smallest bending moment at the beam splice.

Behaviour of open beam-to-tubular column angle connections under combined loading conditions

  • Liu, Yanzhi;Malaga-Chuquitaype, Christian;Elghazouli, Ahmed Y.
    • Steel and Composite Structures
    • /
    • 제16권2호
    • /
    • pp.157-185
    • /
    • 2014
  • This paper examines the behaviour of two types of practical open beam-to-tubular column connection details subjected to combined moment, axial and/or shear loads. Detailed continuum finite element models are developed and validated against available experimental results, and extended to deal with flexural, axial and shear load interactions. A numerical investigation is then carried out on the behaviour of selected connections with different stiffness and strength characteristics under various load combination scenarios. The influence of applied levels of axial tensile or compressive loads on the bending stiffness and capacity is examined and discussed. Additionally, the interaction effects between shear forces and co-existing bending and axial loads are examined and shown to be comparatively insignificant in terms of stiffness and capacity in most cases. It is also shown that the range of connections considered in this paper can provide rotational ductility levels in excess of those required under typical design scenarios. Based on these findings, a simplified component-based representation is proposed and described, and its ability to represent the connection response under combined loading is verified using results from detailed numerical simulations.

Investigation on the flexural behavior of an innovative U-shaped steel-concrete composite beam

  • Turetta, Maxime;Odenbreit, Christoph;Khelil, Abdelouahab;Martin, Pierre-Olivier
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.441-452
    • /
    • 2020
  • Within the French CIFRE research project COMINO, an innovative type of composite beam was developed for buildings that need fire resistance with no additional supports in construction stage. The developed solution is composed of a steel U-shaped beam acting as a formwork in construction stage for a reinforced concrete part that provides the fire resistance. In the exploitation stage, the steel and the reinforced concrete are acting together as a composite beam. This paper presents the investigation made on the load bearing capacity of this new developed steel-concrete composite section. A full-scale test has been carried out at the Laboratory of Structural Engineering of the University of Luxembourg. The paper presents the configuration of the specimen, the fabrication process and the obtained test results. The beam behaved compositely and exhibited high ductility and bending resistance. The shear connection in the tension zone was effective. The beam failed by a separation between the slab and the beam at high deformations, excessive shear forces conducted to a failure of the stirrups in this zone. The test results are then compared with good agreement to analytical methods of design based on EN 1994 and design guidelines are given.

P.E.B 시스템에서 시공상태에 따른 엔드플레이트 접합부의 구조성능평가 (Structural Performance Evaluation of End-plate Connections According to Constructional Quality in P.E.B System)

  • 이은택
    • 한국강구조학회 논문집
    • /
    • 제24권4호
    • /
    • pp.461-468
    • /
    • 2012
  • P.E.B(Pre-Engineering Building) 시스템은 휨모멘트의 크기에따라 부재형상을 최적화한 변단면부재로 설계 사용하는 경제적인 시스템을 의미한다. 이러한 P.E.B 시스템에서 변단면부재의 접합은 일반 철골접합인 마찰접합이 어렵기 때문에 현장조립이 간편한 엔드플레이트 접합이 사용되고 있다. 지압형 인장접합인 엔드플레이트 접합방식은 국내 P.E.B 시스템의 가장 일반적인 접합방식이며, 이미 그 안정성이 안전하다고 판명되었다. 그러나 이러한 엔드플레이트 접합부의 현장볼트 체결시공에 있어서 엔드플레이트와 변단면보 또는 리브의 용접에 의한 열변형 등으로 인해 엔드플레이트의 수직불량이 발생하여 현장에서 설치된 접합부의 벌어짐 현상이 관측되고 있다. 따라서 본 연구에서는 엔드플레이트 초기접합 결함(간격)을 실험변수로 하여 휨모멘트를 받는 엔드플레이트 접합부의 볼트에 대한 허용내력을 조사하여 구조안정성 검토를 수행하였다.

무용접 복합말뚝 수평거동특성 및 연결부 안정성 평가 (Lateral Behavior and Joint Stability of Non-Welding Composite Pile)

  • 고준영;신윤섭;정상섬;부교탁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.108-118
    • /
    • 2009
  • As increasing demand on marine structures and skyscrapers, a deep shaft pile is frequently to be used for the place having weak ground strength. Because heavy horizontal force is generally applied on upper part of pile foundation used in engineering field, steel pile is highly used due to its high resistance to shear force and bending moment, and its capability to carry heavy loads. The steel pile has advantage in good constructibility, high applicability on site and easy handing, but has disadvantage in cost, more expensive than other material pile. This study is to examine the composite pile that makes economical construction possible by reducing material cost of pile; using steel and PHC pile A non welding connection method is applied to this composite pile. This study had step of comparison with the result of numerical analysis after analyzing the result of field test. Numerical analysis is the process of analyzing lateral behavior of non welding composite pile. Moreover, detailed analysis was implemented in order to evaluate joint stability. As a result of the analysis, we could interpret that the stability of the connection part is ensured as seeing the smaller internal stress than approved internal stress. Based on this study, we analyzed lateral behavior of non welding composite pile, which ensured the stability of connection part.

  • PDF

일체식교량의 접속슬래브 연결철근 형상에 따른 연결부 구조거동에 대한 실험연구 (Experimental Study on the Structural Behavior of Typical Bar Connections of Approach Slab in the Integral Abutment Bridge)

  • 유성근;김나연;김호섭;김현기;김영호
    • 복합신소재구조학회 논문집
    • /
    • 제5권4호
    • /
    • pp.24-35
    • /
    • 2014
  • An experimental study on the structural behavior of connection types between approach slab and integral abutment has been done for three typical bar connections. Typical hinge style reinforcing bar detail for its connection is preferred in order to accommodate rotation of the approach slab among engineers. However, the straight horizontal bars can be used as connection detail accomodate structural capacity. Total six specimens with three types of rebar detail are tested for direct tensile and bending load. The characteristic structural behaviors are carefully monitored and all the strain gauge data obtained are analyzed. It is shown that the structural performance of all the specimens well exceed its design allowance. Several design suggestions are given based on careful reviews on the experiment.

Plasticity-damage model parameters identification for structural connections

  • Imamovic, Ismar;Ibrahimbegovic, Adnan;Knopf-Lenoir, Catherine;Mesic, Esad
    • Coupled systems mechanics
    • /
    • 제4권4호
    • /
    • pp.337-364
    • /
    • 2015
  • In this paper we present methodology for parameters identification of constitutive model which is able to present behavior of a connection between two members in a structure. Such a constitutive model for frame connections can be cast in the most general form of the Timoshenko beam, which can present three failure modes. The first failure mode pertains to the bending in connection, which is defined as coupled plasticity-damage model with nonlinear softening. The second failure mode is seeking to capture the shearing of connection, which is defined as plasticity with linear hardening and nonlinear softening. The third failure mode pertains to the diffuse failure in the members; excluding it leads to linear elastic constitutive law. Theoretical formulation of this Timoshenko beam model and its finite element implementation are presented in the second section. The parameter identification procedure that will allow us to define eighteen unknown parameters is given in Section 3. The proposed methodology splits identification in three phases, with all details presented in Section 4 through three different examples. We also present the real experimental results. The conclusions are stated in the last section of the paper.

Bending Behavior of Nailed-Jointed Cross-Laminated Timber Loaded Perpendicular to Plane

  • Pang, Sung-Jun;Kim, Kwang-Mo;Park, Sun-Hyang;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.728-736
    • /
    • 2017
  • In this study, the bending behavior of cross-laminated timber (CLT) connected by nails were investigated. Especially, the load-carrying capacity of the nail-jointed CLT under out-of-plane bending was predicted by the lateral resistance of the used nails. Three-layer nail-jointed CLT specimens and a nail connection were manufactured by 30 mm (thickness) ${\times}$ 100 mm (width) domestic species (Pinus koraiensis) laminas and Ø$3.15{\times}82mm$ nails using a nail-gun. Shear test for evaluating the nail lateral resistance and bending test for evaluating the load-carrying capacity of the nail-jointed CLT under out-of-plane bending were carried out. As a result, two lateral resistance of the used nail, the 5% fastener offset value and the maximum value, were 913 N and 1,534 N, respectively. The predicted load-carrying capacity of the nail-jointed CLT by the 5% offset nail lateral resistance was similar to the yield points on the actual load-displacement curve of the nail-jointed CLT specimens. Meanwhile, the nail-jointed CLT specimens were not failed until the tension failure of the bottom laminas occurred beyond the maximum lateral resistance of the nails. Thus, the measured maximum load carrying capacities of the nail-jointed CLT specimens, approximately 12,865 N, were higher than the predicted values, 7,986 N, by the maximum nail lateral resistance. This indicates that the predicted load-carrying capacity can be used for designing a structural unit such as floor, wall and roof able to support vertical loads in a viewpoint of predicting the actual capacities more safely.