• Title/Summary/Keyword: bending capacity

Search Result 614, Processing Time 0.025 seconds

Experimental and numerical investigation on exposed RCFST column-base Joint

  • Ben, Mou;Xingchen, Yan;Qiyun, Qiao;Wanqiu, Zhou
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.749-766
    • /
    • 2022
  • This paper investigates the seismic performance of exposed RCFST column-base joints, in which the high-strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens with different axial force ratios (n = 0, 0.25, and 0.5) were tested under cyclic loadings. Finite element analysis (FEA) models were validated in the basic indexes and failure mode. The hysteresis behavior of the exposed RCFST column-base joints was studied by the parametrical analysis including six parameters: width of column (D), width-thickness ratio (D/t), axial force ratio (n), shear-span ratio (L/D), steel tube strength (fy) and concrete strength (fc). The bending moment of the exposed RCFST column-base joint increased with D, fy and fc. But the D/t and L/D play a little effect on the bending capacity of the new column-base joint. Finally, the calculation formula is proposed to assess the bending moment capacities, and the accuracy and stability of the formula are verified.

Determination of the Initial Tendon Force in Two-span Continuous Steel-Concrete Composite Beam Strengthened with External Tendons (외부 긴장재로 보강된 2경간 연속 강합성보의 초기 긴장력 결정)

  • Choi, Dong Ho;Yoo, Dong Min;Jung, Jae Dong;Kim, Eun Ji
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.145-154
    • /
    • 2006
  • This paper presents a method to enhance the load carrying capacity for a two-span continuous steel-concrete composite beam strengthened with external tendons. The tendon is placed at the bottom of steel beam where the positive bending moment occurs. This results in the reduction of the negative bending moment as well as the positive bending moment. This paper describes the procedure to determine the number of tendon and the initial tendon force for the target rating factor in the rating factor equation. An example beam is given to demonstrate the proposed procedure, and it validity is confirmed.

The Shape Optimal Design of Shaft Serration Using Design of Experiment and Finite Element Method (실험계획법과 유한요소법을 이용한 주축계의 세레이션 형상 최적설계)

  • Kim, Eui-Soo;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.72-79
    • /
    • 2008
  • To meet demand of big capacity and high speed rotation for washing machine, more stress from bending and twisting are complexly loaded onto the shaft supporting the horizontal drum, causing problems in fracture strength and fatigue life. Shafting system is mainly divided into flange and shaft. Shaft and flange connected by inserting shaft serration into flange on the process of die casting. When the system is operating, the gap is formed between serration and flange. But, Serration has various design factors and the optimal values can't be easily determined. Using a design of experiment (DOE) based on the FEM (Finite Element Method), this study was performed investigating the interaction effect between the various design factors as well as the main effect of the each design factor under bending, twist and vibration and proposed optimum design using box-behnken method among response surface derived from regression equation of simulation-based DOE.

Nonlinear section model for analysis of RC circular tower structures weakened by openings

  • Lechman, Marek;Stachurski, Andrzej
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.161-172
    • /
    • 2005
  • This paper presents the section model for analysis of RC circular tower structures based on nonlinear material laws. The governing equations for normal strains due to the bending moment and the normal force are derived in the case when openings are located symmetrically in respect to the bending direction. In this approach the additional reinforcement at openings is also taken into account. The mathematical model is expressed in the form of a set of nonlinear equations which are solved by means of the minimization of the sums of the second powers of the residuals. For minimization the BFGS quasi-Newton and/or Hooke-Jeeves local minimizers suitably modified are applied to take into account the box constraints on variables. The model is verified on the set of data encountered in engineering practice. The numerical examples illustrate the effects of the loading eccentricity and size of the opening on the strains and stresses in concrete and steel in the cross-sections under consideration. Calculated results indicate that the additional reinforcement at the openings increases the resistance capacity of the section by several percent.

Experimental capacity of perforated cold-formed steel open sections under compression and bending

  • Orlando, Maurizio;Lavacchini, Giovanni;Ortolani, Barbara;Spinelli, Paolo
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.201-211
    • /
    • 2017
  • This study evaluates the reliability of present European codes in predicting the collapse load of columns made with perforated cold-formed steel (CFS) profiles under combined axial load and bending. To this aim, a series of experimental tests on slender open-section specimens have been performed at varying load eccentricity. Preliminarily, stub column tests have also been performed to calculate the effective section properties of the investigated profile. By comparison of experimental data with code-specified M-N strength domains, the authors demonstrate that present code formulations may underestimate the collapse load of thin-walled perforated open sections. The study is the first step of a wider experimental and numerical study aimed at better describing strength domains of perforated CFS open sections.

Distortional and local buckling of steel-concrete composite box-beam

  • Jiang, Lizhong;Qi, Jingjing;Scanlon, Andrew;Sun, Linlin
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.243-265
    • /
    • 2013
  • Distortional and local buckling are important factors that influences the bearing capacity of steel-concrete composite box-beam. Through theoretical analysis of distortional buckling forms, a stability analysis calculation model of composite box beam considering rotation of steel beam top flange is presented. The critical bending moment calculation formula of distortional buckling is established. In addition, mechanical behaviors of a steel beam web in the negative moment zone subjected separately to bending stress, shear stress and combined stress are investigated. Elastic buckling factors of steel web under different stress conditions are calculated. On the basis of local buckling analysis results, a limiting value for height-to thickness ratio of a steel web in the elastic stage is proposed. Numerical examples are presented to verify the proposed models.

Analysis of functional roles of ten trunk muscles in voluntary isometric exertion tasks (자의적 등척성 작업에서 몸통 근육의 기능적 발휘 형태 분석)

  • Song, Yeong-Ung;Jeong, Min-Geun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.47-57
    • /
    • 2003
  • This study investigated the recruitment patterns of ten trunk muscles in isometric exertion tasks, focused on the functional roles (agonist or antagonist). Twelve male students performed maximum voluntary isometric exertion tasks towards six directions: flexion/extension, left/right lateral bending, and clockwise/counter-clockwise twisting. EMG signals from ten trunk muscles and exertion forces were collected. Normalized EMG (NEMG) values were calculated at 10, 20, 30, 40, 50, 60, 70, 80, and 90 %MVC. The subjects showed a limited capacity in producing twisting moments, approximately 50% of the extension moment, and 70% of lateral bending moments. EMG activity was dependent on the direction and magnitude of the exertion, and also on the functional role. The mean NEMG of agonist was 0.260 and 0.067 for antagonist. Agonists showed the highest mean NEMG in flexion (0.367), while antagonists showed the highest mean NEMG in twisting clockwise/counter-clockwise (0.090/0.106).

Analysis of Slender RC Column Subjected to Long-term Biaxial Bending (장기 2축 휨을 받는 철근 콘크리트 장주의 해석)

  • Kwak, Hyo-Kyoung;Kwak, Ji-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.181-182
    • /
    • 2009
  • A numerical model is suggested to calculate the long-term resisting capacity of slender Reinforced Concrete(RC) columns subject to axial load with biaxial bending moments. In this model, geometric nonlinearities by the long-term behavior of concrete and P- $\Delta$ effect as well as material nonlinearities by cracking of concrete and yielding of steel are considered. Experimental result from other researchers are compared to verify the proposed model.

  • PDF

An Experimental Study on the Behaviours of Reinforced Concrete Beam with Openning (철근 콘크리트 유공보의 거동에 관한 실험적 연구)

  • Kim, Cheol-Hwan;Jung, Hwan-Mok;Lee, Chang-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.57-63
    • /
    • 2004
  • Many researches have been conducted to describe the structural behaviour of reinforced concrete beams with openings, and were generally concentrated on the shear behaviours. The objective of this paper is to study the shear and bending capacities of RC beams with openning. In experimental study, a total of seven RC beam with circular opennings under monotonic loading conditions were investigated. The parameters used in this study include the openning size and the existence of re-bar.

  • PDF

Finite Element Simulation of Behavior of WBK Cored Sandwich Panels Subjected to Bending Loads (굽힘하중 하의 벌크형 와이어 직조 카고메 트러스 중간재를 갖는 샌드위치 판재의 기계적 거동)

  • Choi, Ji-Eun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.353-359
    • /
    • 2009
  • Wire-woven Bulk Kagome (WBK) is a new truss type cellular metal fabricated by systematic assembling of helical wires in six directions. In this work, the experiments of mechanical behaviors of WBK cored sandwich panels subjected to bending load were performed and the results were compared with those by the corresponding analytic solutions. And also, finite element simulations were performed to validate the optimal design according to the analytic solutions. It is found the sandwich panel with WBK core performed excellently in terms of energy absorption and deformation stability after the peak point as well as the load capacity.