DOI QR코드

DOI QR Code

Experimental capacity of perforated cold-formed steel open sections under compression and bending

  • Received : 2016.10.04
  • Accepted : 2017.03.21
  • Published : 2017.06.10

Abstract

This study evaluates the reliability of present European codes in predicting the collapse load of columns made with perforated cold-formed steel (CFS) profiles under combined axial load and bending. To this aim, a series of experimental tests on slender open-section specimens have been performed at varying load eccentricity. Preliminarily, stub column tests have also been performed to calculate the effective section properties of the investigated profile. By comparison of experimental data with code-specified M-N strength domains, the authors demonstrate that present code formulations may underestimate the collapse load of thin-walled perforated open sections. The study is the first step of a wider experimental and numerical study aimed at better describing strength domains of perforated CFS open sections.

Keywords

References

  1. Angotti, F., Galano, L., Orlando, M. and Vignoli, A. (2002), "Assessment of structural performance of HSC slender columns via experimental tests and numerical analysis", Proceedings of the 6th International Symposium on Utilization of High Strength / High Performance Concrete, Leipzig, Germany, June; Leipzig University, Institute for Structural Concrete and Building Materials, Volume 1, pp. 149-164. ISBN: 3934178189
  2. Bernuzzi, C. and Castiglioni, C.A. (2001), "Experimental analysis on the cyclic behaviour of beam-to-column joints in steel storage pallet racks", Thin-Wall. Struct., 39(10), 841-859. https://doi.org/10.1016/S0263-8231(01)00034-9
  3. Bertocci, L., Comparini, D., Lavacchini, G., Orlando, M., Salvatori, L. and Spinelli, P. (2016), "Experimental, numerical, and regulatory P-Mx-My domains for cold-formed perforated steel uprights of pallet-racks", Thin-Wall. Struct. [Submitted]
  4. Camotim, D., Basaglia, C. and Silvestre, N. (2010), "GBT buckling analysis of thin-walled steel frames: A state-of-the-art report", Thin-Wall. Struct., 48(10-11), 726-743. https://doi.org/10.1016/j.tws.2009.12.003
  5. CEN-COMITE EUROPEEN DE NORMALISATION (2006a), EN 1993-1-1: Eurocode 3: Design of steel structures-Part 1-1: General rules and rules for buildings; Brussels, Switzerland.
  6. CEN-COMITE EUROPEEN DE NORMALISATION (2006b), EN 1993-1-3: Eurocode 3-Design of steel structures, Part 1-3: General rules-Supplementary rules for cold-formed members and sheeting; Brussels, Switzerland.
  7. CEN-COMITE EUROPEEN DE NORMALISATION (2006c), EN 1993-1-5: Eurocode 3-Design of steel structures. Design of steel structures-Part 1-5: Plated structural elements; Brussels, Switzerland.
  8. CEN-COMITE EUROPEEN DE NORMALISATION (2009), EN 15512-Steel static storage systems-Adjustable pallet racking systems-Principles for structural design; Brussels, Switzerland.
  9. Craveiro, H.D., Rodrigues, J.P.C. and Laim, L. (2016), "Buckling resistance of axially loaded cold-formed steel columns", Thin-Wall. Struct., 106, 358-375. https://doi.org/10.1016/j.tws.2016.05.010
  10. Crisan, A., Ungureanu, V. and Dubina, D. (2012a), "Behaviour of cold-formed steel perforated sections in compression. Part 1-Experimental investigations", Thin-Wall. Struct., 61, 86-96. https://doi.org/10.1016/j.tws.2012.07.016
  11. Crisan, A., Ungureanu, V. and Dubina, D. (2012b), "Behaviour of cold-formed steel perforated sections in compression. Part 2-Numerical investigations and design considerations", Thin-Wall. Struct., 61, 97-105. https://doi.org/10.1016/j.tws.2012.07.013
  12. Davies, J.M. (2000), "Recent research advances in cold-formed steel structures", J. Constr. Steel Res., 55(1), 267-288. https://doi.org/10.1016/S0143-974X(99)00089-9
  13. Davies, J.M., Leach, P. and Taylor, A. (1997), "The design of perforated cold-formed steel sections subject to axial load and bending", Thin-Wall. Struct., 29(1-4), 141-157. https://doi.org/10.1016/S0263-8231(97)00024-4
  14. Foraboschi, P. (2014), "Experimental characterization of nonlinear behavior of monolithic glass", Int. J. Non-Linear Mech., 67, 352-370. https://doi.org/10.1016/j.ijnonlinmec.2014.09.016
  15. Foraboschi, P. (2016), "Versatility of steel in correcting construction deficiencies and in seismic retrofitting of RC buildings", J. Build. Eng., 8, 107-122. https://doi.org/10.1016/j.jobe.2016.10.003
  16. Kàrmàn, T.V., Sechler, E.E. and Donnell, L.H. (1932), "The strength of thin plates in compression", Transact. Appl. Mech. Div., ASME, 54(2), 53-57.
  17. Kesti, J. and Davies, M.J. (1999), "Local and distortional buckling of thin-walled short columns", Thin-Wall. Struct., 34(2), 115-134. https://doi.org/10.1016/S0263-8231(99)00003-8
  18. Lavacchini, G., Orlando, M., Ortolani, B. and Spadaccini, O. (2013), "Cold-formed steel open profiles: Experimental campaign and comparison with code-specified M-N strength domains", Costruzioni Metalliche, 4, 48-59. [In Italian]
  19. Lecce, M. and Rasmussen, K. (2006a), "Distortional buckling of cold-formed stainless steel sections: Experimental investigation", J. Struct. Eng., 132(4), 497-504. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:4(497)
  20. Lecce, M. and Rasmussen, K. (2006b), "Distortional buckling of cold-formed stainless steel sections: Finite-element modeling and design", J. Struct. Eng., 132(4), 505-514. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:4(505)
  21. Li, Z. and Schafer, B.W. (2010), "Application of the finite strip method in cold-formed steel member design", J. Constr. Steel Res., 66(8-9), 971-980. https://doi.org/10.1016/j.jcsr.2010.04.001
  22. Lian, Y., Uzzaman, A., Lim, J.B.P., Abdelal, G., Nash, D. and Young, B. (2016), "Effect of web holes on web crippling strength of cold-formed steel channel sections under end-oneflange loading condition-Part I: Tests and finite element analysis", Thin-Wall. Struct., 107, 443-452. https://doi.org/10.1016/j.tws.2016.06.025
  23. Moen, C.D. and Schafer, B.W. (2009), "Elastic buckling of thin plates with holes in compression or bending", Thin-Wall. Struct., 47(12), 1597-1607. DOI: http://dx.doi.org/10.1016/j.tws.2009.05.001
  24. Papangelis, J.P. and Hancock, G.J. (1995), "Computer analysis of thin-walled structural members", Comput. Struct., 56(1), 157-176. https://doi.org/10.1016/0045-7949(94)00545-E
  25. Rondal, J. (2000), "Cold formed steel members and structures: General report", J. Constr. Steel Res., 55(1), 155-158. https://doi.org/10.1016/S0143-974X(99)00083-8
  26. Salhab, B. and Wang, Y.C. (2008), "Equivalent thickness of coldformed thin-walled channel sections with perforated webs under compression", Thin-Wall. Struct., 46(7), 823-838. https://doi.org/10.1016/j.tws.2008.01.029
  27. Sarawit, A.T. and Pekoz, T. (2001), "Design of industrial storage racks", Prog. Struct. Eng. Mater., 3(1), 28-35. https://doi.org/10.1002/pse.63
  28. Schafer, B.W. (2002), "Local, distortional and Euler buckling of thin-walled columns", J. Struct. Eng., 128(3), 289-299. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9445(2002)128:3(289)
  29. Silvestre, N. and Camotim, D. (2003), "Nonlinear generalized beam theory for cold-formed steel members", Int. J. Struct. Stabil. Dyn., 3(4), 461-490. https://doi.org/10.1142/S0219455403001002
  30. Sivakumaran, K.S. and Abdel-Rahman, N. (1998), "A finite element analysis model for the behaviour of cold-formed steel members", Thin-Wall. Struct., 31(4), 305-324. https://doi.org/10.1016/S0263-8231(98)00017-2
  31. StruMetaL (2015), Strutture Metalliche Leggere per Magazzini Autoportanti ad Elevata Capacità (Light Steel Structures for Self-Supporting Warehouses with Large Storage Capacity); Research Program partially supported by Tuscany Region (Regional Operational Programme CreO FESR 2007-2013, Lines of Action 1.5.a and 1.6, Call for Proposals R&D 2012, D.R. 189/2012-prot. N. 19044).
  32. Szabo, I.F. and Dubina, D. (2004), "Recent research advances on ECBL approach. Part II: Interactive buckling of perforated sections", Thin-Wall. Struct., 42(2), 195-210. https://doi.org/10.1016/S0263-8231(03)00057-0
  33. Teh, L.H., Hancock, G.J. and Clarke, M.J. (2004), "Analysis and design of double-sided high-rise steel pallet rack frames", J. Struct. Eng., 130(7), 1011-1021. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:7(1011)
  34. Ungureanu, V., Madeo, A., Zagari, G., Zucco, G., Dubina, D. and Zinno, R. (2016), "Koiter asymptotic analysis of thin-walled cold-formed steel uprights pallet racks structures", Structures, 8, 286-299. https://doi.org/10.1016/j.istruc.2016.04.006
  35. Yan, J. and Young, B. (2002), "Column tests of cold-formed steel channels with complex stiffeners", J. Struct. Eng., 128(6), 737-745. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:6(737)
  36. Young, B. and Chen, J. (2008), "Column tests of cold-formed steel non-symmetric lipped angle sections", J. Constr. Steel Res., 64(7), 808-815. https://doi.org/10.1016/j.jcsr.2008.01.021
  37. Young, B. and Rasmussen, J.R. (1998), "Tests of fixed-ended plain channel columns", J. Struct. Eng., 124(2), 131-139. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:2(131)
  38. Zagari, G., Zucco, G., Madeo, A., Ungureanu, V., Zinno, R. and Dubina, D. (2016), "Evaluation of the erosion of critical buckling load of cold-formed steel members in compression based on Koiter asymptotic analysis", Thin-Wall. Struct., 108, 193-204. https://doi.org/10.1016/j.tws.2016.08.011

Cited by

  1. Effect of web hole spacing on axial capacity of back-to-back cold-formed steel channels with edge-stiffened holes vol.40, pp.2, 2017, https://doi.org/10.12989/scs.2021.40.2.287