• 제목/요약/키워드: bending and shear deformations

검색결과 79건 처리시간 0.024초

A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis

  • Kaddari, Miloud;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.37-57
    • /
    • 2020
  • This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced, and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory, the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the foundation parameters on bending and vibration of porous FG plate.

고준위폐기물 처분장치 및 완충장치에 대한 탄소성해석 : 비대칭 암반력 (An Elastoplastic Analysis for Spent Nuclear Fuel Disposal Container and Its Bentonite Buffer: Asymmetric Rock Movement)

  • 권영주;최석호
    • 소성∙가공
    • /
    • 제12권5호
    • /
    • pp.479-486
    • /
    • 2003
  • This paper presents an elastoplastic analysis for spent nuclear fuel disposal container and its 50 cm thick bentonite buffer to predict the collapse of the container while the horizontal asymmetric sudden rock movement of 10 cm is applied on the composite structure. This sudden rock movement is anticipated by the earthquake etc. at a deep underground. Elastoplastic material model is adopted. Drucker-Prager yield criterion is used for the material yield prediction of the bentonite buffer and von-Mises yield criterion is used for the material yield prediction of the container. Analysis results show that even though very large deformations occur beyond the yield point in the bentonite buffer, the container structure still endures elastic small strains and stresses below the yield strength. Hence, the asymmetric 50 cm thick bentonite buffer can protect the container safely against the 10 cm sudden rock movement by earthquake etc.. Analysis results also show that bending deformations occur in the container structure due to the shear deformation of the bentonite buffer. The finite element analysis code, NISA, is used for the analysis.

Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment

  • Bot, Ikram Kheira;Bousahla, Abdelmoumen Anis;Zemri, Amine;Sekkal, Mohamed;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, M.H.;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.821-837
    • /
    • 2022
  • This research is devoted to study the effects of humidity and temperature on the bending behavior of functionally graded (FG) ceramic-metal porous plates resting on Pasternak elastic foundation using a quasi-3D hyperbolic shear deformation theory developed recently. The present plate theory with only four unknowns, takes into account both transverse shear and normal deformations and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. The governing differential equations are obtained using the "principle of virtual work". Analytically, the Navier method is used to solve the equations that govern a simply supported FG porous plate. The obtained results are checked by comparing the results determined for the perfect and imperfect FG plates with those available in the scientific literature. Effects due to material index, porosity factors, moisture and thermal loads, foundation rigidities, geometric ratios on the FG porous plate are all examined. Finally, this research will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.

가압식 돌기네일의 전단저항 효과 (Shear Resisting Effects of Protruded Nails by Pressure Grouting)

  • 홍철화;이상덕
    • 한국지반환경공학회 논문집
    • /
    • 제18권7호
    • /
    • pp.13-20
    • /
    • 2017
  • 쏘일 네일링은 원지반의 전단강도와 네일의 인발 전단 저항력을 이용한 지반 보강 공법이다. 쏘일 네일링 공법은 주로 절취사면, 흙막이 구조물 및 옹벽 보강 등에 사용된다. 흙막이 구조물과 옹벽의 경우 네일의 인발저항만을 고려하여 설계하여도 무방하나, 비탈면의 경우 인발은 물론 전단 및 휨 저항까지 고려하여 설계하여야 한다. 하지만 인발저항만 고려한 보수적인 설계가 이루어지고 있으며, 대부분이 네일의 재료, 형상, 시공방법 등의 개선을 통한 인발저항 증대에 관한 연구이다. 실제 쏘일네일로 보강된 지반은 활동면을 중심으로 전단 휨 변형이 발생하게 된다. 상대적으로 강도가 취약한 그라우트는 파괴되고 보강재와 분리되어 지반은 마찰저항력이 급감하면서 붕괴된다. 따라서 네일과 그라우트체의 분리를 억제하면서 전단저항력을 증가시킬 수 있는 공법개발이 필요한 실정이다. 본 연구에서는 이형철근 외측에 패커를 설치한 후 가압식 그라우팅을 통해 돌기를 형성함으로써 전단저항력을 증대시킬 수 있는 새로운 쏘일 네일링 공법에 대하여 실험적 연구를 수행하였다.

Effect of flexural and shear stresses simultaneously for optimized design of butterfly-shaped dampers: Computational study

  • Farzampour, Alireza;Eatherton, Matthew R.;Mansouri, Iman;Hu, Jong Wan
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.329-335
    • /
    • 2019
  • Structural fuses are made up from oriented steel plates to be used to resist seismic force with shear loading resistance capabilities. The damage and excessive inelastic deformations are concentrated in structural fuses to avoid any issues for the rest of the surrounding elements. Recently developed fuse plates are designed with engineered cutouts leaving flexural or shear links with controlled yielding features. A promising type of link is proposed to align better bending strength along the length of the link with the demand moment diagram is a butterfly-shaped link. Previously, the design methodologies are purely based on the flexural stresses, or shear stresses only, which overestimate the dampers capability for resisting against the applied loadings. This study is specifically focused on the optimized design methodologies for commonly used butterfly-shaped dampers. Numerous studies have shown that the stresses are not uniformly distributed along the length of the dampers; hence, the design methodology and the effective implementation of the steel need revisions and improvements. In this study, the effect of shear and flexural stresses on the behavior of butterfly-shaped links are computationally investigated. The mathematical models based on von-Mises yielding criteria are initially developed and the optimized design methodology is proposed based on the yielding criterion. The optimized design is refined and investigated with the aid of computational investigations in the next step. The proposed design methodology meets the needs of optimized design concepts for butterfly-shaped dampers considering the uniform stress distribution and efficient use of steel.

두꺼운 링의 고유진동 해석 (Natural Vibration Analysis of Thick Rings)

  • 박정우;김세희;김창부
    • 한국소음진동공학회논문집
    • /
    • 제15권10호
    • /
    • pp.1186-1194
    • /
    • 2005
  • In this paper, we have systematically formulated the equations concerned to the in-plane and out-of-plane motions and deformations of a thick circular beam by using the kinetic and strain energies in order to analyse natural frequencies of a thick ring. The effects of variation of radius of curvature across the cross-section and also the effects of bending shear, extension and twist are considered. The equations of motion for natural vibration analysis of a ring are obtained utilizing the cyclic symmetry of vibration modes of the ring. The frequencies calculated using thick ring model and thin ring model are compared and discussed with the ones obtained from finite element analysis using the method of cyclic symmetry with 20-node hexahedral solid elements for rings with the different ratio of radial thickness to mean radius.

두꺼운 링의 고유진동 해석 (Natural Vibration Analysis of Thick Rings)

  • 김창부;박정우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.459-466
    • /
    • 2005
  • In this paper, we have systematically formulated the equations concerned to the in-plane and out-of-plane motions and deformations of a thick circular beam by using the kinetic and strain energies in order to analyse natural frequencies of a thick ring. The effects of variation of radius of curvature across the cross-section and also the effects of bending shear, extension and twist are considered. The equations of motion for natural vibration analysis of a ring are obtained utilizing the cyclic symmetry of vibration modes of the ring. The frequencies calculated using thick ring model and thin ring model are compared and discussed with the ones obtained from finite element analysis using the method of cyclic symmetry with 20-node hexahedral solid elements for rings with the different ratio of radial thickness to mean radius.

  • PDF

모아레 간섭계를 이용한 BGA 패키지의 비선형 열변형 해석 (Non-linear Temperature Dependent Deformation Analysis of BGA Package Using Moire Interferometry)

  • 주진원
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2003년도 기술심포지움 논문집
    • /
    • pp.28-32
    • /
    • 2003
  • Thermo-mechanical behavior of a ceramic ball grid array(CBGA) package assembly and wire bond ball grid array(WB-PBGA) package assemblies are characterized by high sensitive moire interferometry. Moire fringe patterns are recorded and analyzed at various temperatures in a temperature cycle. Thermal-history dependent analyses of global and local deformations are presented, and bending deformation(warpage) of the package and shear strain in the rightmost solder ball are discussed. A significant non-linear global behavior is documented due to stress relaxation at high temperature. The locations of the critical solder ball in WB-PBGA package assemblies are documented.

  • PDF

위성체 유연 보 구조물의 열 안정성 해석 (Thermal Stability Analysis of Flexible Beam Spacecraft Appendage)

  • 윤일성;송오섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.399-406
    • /
    • 2001
  • Thermally induced vibration response of composite thin walled beams is investigated. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferentially uniform system(CUS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated.

  • PDF

Thermomechanics failure of RC composites: computational approach with enhanced beam model

  • Ngo, Minh;Ibrahimbegovic, Adnan;Brancherie, Delphine
    • Coupled systems mechanics
    • /
    • 제3권1호
    • /
    • pp.111-145
    • /
    • 2014
  • In this paper we present a new model for computing the nonlinear response of reinforced concrete frame systems subjected to extreme thermomechanical loads. The first main feature of the model is its ability to account for both bending and shear failure of the reinforced concrete composites within frame-like model. The second prominent feature concerns the model capability to represent the total degradation of the material properties due to high temperature and the thermal deformations. Several numerical simulations are given to confirm these capabilities and illustrate a very satisfying model performance.