• Title/Summary/Keyword: benchmark model

Search Result 713, Processing Time 0.029 seconds

Numerical simulation of 2-D fluid-structure interaction with a tightly coupled solver and establishment of the mooring model

  • Tsai, I-Chen;Li, Sing-Ya;Hsiao, Shih-Chun;Hsiao, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.433-449
    • /
    • 2021
  • In this study, a newly enhanced Fluid-Structure Interaction (FSI) model which incorporates mooring lines was used to simulate a floating structure. The model has two parts: a Computational Fluid Dynamics (CFD) model and a mooring model. The open-source CFD OpenFOAM® v1712 toolbox was used in the present study, and the convergence criteria and relaxation method were added to the computational procedure used for the OpenFOAM multiphase flow solver, interDyMFoam. A newly enhanced, tightly coupled solver, CoupledinterDyMFoam, was used to decrease the artificial added mass effect, and the results were validated through a series of benchmark cases. The mooring model, based on the finite element method, was established in MATLAB® and was validated against a benchmark analytical elastic catenary solution and numerical results. Finally, a model which simulates a floating structure with mooring lines was successfully constructed by connecting the mooring model to CoupledinterDyMFoam.

Comparison of black and gray box models of subspace identification under support excitations

  • Datta, Diptojit;Dutta, Anjan
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.4
    • /
    • pp.365-379
    • /
    • 2017
  • This paper presents a comparison of the black-box and the physics based derived gray-box models for subspace identification for structures subjected to support-excitation. The study compares the damage detection capabilities of both these methods for linear time invariant (LTI) systems as well as linear time-varying (LTV) systems by extending the gray-box model for time-varying systems using short-time windows. The numerically simulated IASC-ASCE Phase-I benchmark building has been used to compare the two methods for different damage scenarios. The efficacy of the two methods for the identification of stiffness parameters has been studied in the presence of different levels of sensor noise to simulate on-field conditions. The proposed extension of the gray-box model for LTV systems has been shown to outperform the black-box model in capturing the variation in stiffness parameters for the benchmark building.

Update the finite element model of Canton Tower based on direct matrix updating with incomplete modal data

  • Lei, Y.;Wang, H.F.;Shen, W.A.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.471-483
    • /
    • 2012
  • In this paper, the structural health monitoring (SHM) benchmark problem of the Canton tower is studied. Based on the field monitoring data from the 20 accelerometers deployed on the tower, some modal frequencies and mode shapes at measured degrees of freedom of the tower are identified. Then, these identified incomplete modal data are used to update the reduced finite element (FE) model of the tower by a novel algorithm. The proposed algorithm avoids the problem of subjective selection of updated parameters and directly updates model stiffness matrix without model reduction or modal expansion approach. Only the eigenvalues and eigenvectors of the normal finite element models corresponding to the measured modes are needed in the computation procedures. The updated model not only possesses the measured modal frequencies and mode shapes but also preserves the modal frequencies and modes shapes in their normal values for the unobserved modes. Updating results including the natural frequencies and mode shapes are compared with the experimental ones to evaluate the proposed algorithm. Also, dynamic responses estimated from the updated FE model using remote senor locations are compared with the measurement ones to validate the convergence of the updated model.

Design of the Benchmark through the Efficiency Analysis of Public Information Services of E-government (전자정부 대국민 정보서비스 효율성 분석을 통한 벤치마킹 설계)

  • Shin, Seoung-Hyo;Kim, Seung-Hee;Kim, Woo-Je
    • Journal of Information Technology Services
    • /
    • v.12 no.3
    • /
    • pp.405-420
    • /
    • 2013
  • The purpose of this paper is to develop an evaluation model for e-government system in Korea which is one of world best practices of e-government systems. We have presented a method to perform an efficiency analysis of each e-government service which in a component of e-government system in Korea and to establish a benchmark target for each e-government service. To do this, the output-oriented DEA(Data Envelopment Analysis) CCR model was performed for the selected 12 e-government public services of Korean e-government system in this paper. As a result of DEA analysis, first the internet civil appeal support service, the employment comprehensive information service, and the company support information service were evaluated as the efficient solutions among the 12 e-government public services. Second the remaining 9 e-government public services were evaluated as the inefficient information services which should be improved in terms of their service levels. Finally the benchmark targets for the inefficient e-government services were suggested to improve those inefficient systems through DEA analysis.

Seismic performance evaluation of a three-dimensional unsymmetrical reinforced concrete building

  • Lim, Hyun-Kyu;Kang, Jun Won;Lee, Young-Geun;Chi, Ho-Seok
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.2
    • /
    • pp.143-156
    • /
    • 2016
  • Reinforced concrete (RC) structures require advanced analysis techniques for better estimation of their seismic responses, especially in the case of exhibiting complex three-dimensional coupling of torsional and flexural behaviors. This study focuses on validating a numerical approach for evaluating the seismic response of a three-dimensional unsymmetrical RC structure through the participation in the SMART 2013 international benchmark program. The benchmark program provides material properties, detailed drawings of the RC structure, and input ground motions for the seismic response evaluation. In this study, nonlinear constitutive models of concrete and rebar were formed and local tests were conducted to verify the constitutive models in finite element analysis. Elastic calibration of the finite element model of the SMART 2013 RC structure was performed by comparing numerical and experimental results in modal and linear time history analyses. Using the calibrated model, nonlinear earthquake analysis and seismic fragility analysis were performed to estimate the behavior and vulnerability of the RC structure with various ground motions.

Seismic response control of benchmark highway bridge using variable dampers

  • Madhekar, S.N.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.953-974
    • /
    • 2010
  • The performance of variable dampers for seismic protection of the benchmark highway bridge (phase I) under six real earthquake ground motions is presented. A simplified lumped mass finite-element model of the 91/5 highway bridge in Southern California is used for the investigation. A variable damper, developed from magnetorheological (MR) damper is used as a semi-active control device and its effectiveness with friction force schemes is investigated. A velocity-dependent damping model of variable damper is used. The effects of friction damping of the variable damper on the seismic response of the bridge are examined by taking different values of friction force, step-coefficient and transitional velocity of the damper. The seismic responses with variable dampers are compared with the corresponding uncontrolled case, and controlled by alternate sample control strategies. The results of investigation clearly indicate that the base shear, base moment and mid-span displacement are substantially reduced. In particular, the reduction in the bearing displacement is quite significant. The friction and the two-step friction force schemes of variable damper are found to be quite effective in reducing the peak response quantities of the bridge to a level similar to or better than that of the sample passive, semi-active and active controllers.

Mixed H$_2$H$\infty$and $\mu$-synthesis Approach to Coupled Three-Inertia Benchmark Problem (혼합 H$_2$H$\infty$$\mu$-이론을 이용한 벤치마크 문제의 해법)

  • 최연욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.22-22
    • /
    • 2000
  • This study investigates the use of mixed $H_2/H_{\infty}$ and $\mu$-synthesis to construct a robust controller for the benchmark problem. The model treated in the problem is a coupled three-inertia system which reflects the dynamics of mechanical vibrations. We, first adopt the mixed $H_2/H_{\infty}$ the to design a feedback controller K(s). Next, $\mu$-synthesis method is applied to the overall system to make use of structured parametric uncertainty.

  • PDF

Analytical Coexistence Benchmark for Assessing the Utmost Interference Tolerated by IEEE 802.20

  • Abdulla, Mouhamed;Shayan, Yousef R.
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.43-52
    • /
    • 2011
  • Whether it is crosstalk, harmonics, or in-band operation of wireless technologies, interference between a reference system and a host of offenders is virtually unavoidable. In past contributions, a benchmark has been established and considered for coexistence analysis with a number of technologies including FWA, UMTS, and WiMAX. However, the previously presented model does not take into account the mobility factor of the reference node in addition to a number of interdependent requirements regarding the link direction, channel state, data rate and system factors; hence limiting its applicability for the MBWA (IEEE 802.20) standard. Thus, over diverse modes, in this correspondence we analytically derived the greatest aggregate interference level tolerated for high-fidelity transmission tailored specifically for the MBWA standard. Our results, in the form of benchmark indicators, should be of particular interest to peers analyzing and researching RF coexistence scenarios with this new protocol.

Estimating Permissible Intake Level for Endosulfan Using Benchmark Dose based on Reproductive Tonicity (생식독성과 Benchmark Dose를 활용한 Endosulfan의 노출허용수준 산출)

  • 이효민;윤은경;염영나;황명실;양기화;신효선
    • Toxicological Research
    • /
    • v.18 no.1
    • /
    • pp.65-71
    • /
    • 2002
  • A benchmark dose (BMD) approach has been evaluated us a replacement for the traditional NOAEL methodology currently being wed to assess the noncancer effects of toxicants. The endocrine disrupt-ing effect of endosulfan which showed decrement of sperm count and testicular testosterone level in animals, was currently reported. The amount of endosulfan used as pesticide in the country has been continuously increased. The aim of this study was to suggest the permissible intake level (PIL), corresponding to Accept-able Daily Intake (ADI), based on endocrine disrupting effect wing BMD. Various animal data were collected by consideration of critical effect showing endocrine disruption and an animal data for reproductive toxicity was selected. The Power model from BMD software for induction of $BMD_10$ having meaning which is the dose at the 95% lower confidence limit on a 10% response was used due to that the form of selected dose-response animal data was continuous data. The $BMD_10$ was estimated to be 0.393 mg/kg/day based on reproductive toxicity showing decrement of sperm count. The permissible intake level (PIL) was calculated by dividing the $BMD_10$ by the uncertainty factors of 100 with consideration of from animal to human and human variability. The PIL as 0.004 mg/kg/day was compared with traditional ADI as 0.006 mg/kg/day based on the incidence of marked progressive glomerulonephrosis and blood vessel aneurysm in males.

Benchmark Results on the Linearized Equations of Motion of an Uncontrolled Bicycle

  • Schwab A. L.;Meijaard J. P.;Papadopoulos J. M.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.292-304
    • /
    • 2005
  • In this paper we present the linearized equations of motion for a bicycle as a benchmark. The results obtained by pencil-and-paper and two programs are compared. The bicycle model we consider here consists of four rigid bodies, viz. a rear frame, a front frame being the front fork and handlebar assembly, a rear wheel and a front wheel, which are connected by revolute joints. The contact between the knife-edge wheels and the flat level surface is modelled by holonomic constraints in the normal direction and by non-holonomic constraints in the longitudinal and lateral direction. The rider is rigidly attached to the rear frame with hands free from the handlebar. This system has three degrees of freedom, the roll, the steer, and the forward speed. For the benchmark we consider the linearized equations for small perturbations of the upright steady forward motion. The entries of the matrices of these equations form the basis for comparison. Three diffrent kinds of methods to obtain the results are compared : pencil-and-paper, the numeric multibody dynamics program SPACAR, and the symbolic software system Auto Sim. Because the results of the three methods are the same within the machine round-off error, we assume that the results are correct and can be used as a bicycle dynamics benchmark.