• Title/Summary/Keyword: belief propagation

Search Result 95, Processing Time 0.037 seconds

An Improvement of UMP-BP Decoding Algorithm Using the Minimum Mean Square Error Linear Estimator

  • Kim, Nam-Shik;Kim, Jae-Bum;Park, Hyun-Cheol;Suh, Seung-Bum
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.432-436
    • /
    • 2004
  • In this paper, we propose the modified uniformly most powerful (UMP) belief-propagation (BP)-based decoding algorithm which utilizes multiplicative and additive factors to diminish the errors introduced by the approximation of the soft values given by a previously proposed UMP BP-based algorithm. This modified UMP BP-based algorithm shows better performance than that of the normalized UMP BP-based algorithm, i.e., it has an error performance closer to BP than that of the normalized UMP BP-based algorithm on the additive white Gaussian noise channel for low density parity check codes. Also, this algorithm has the same complexity in its implementation as the normalized UMP BP-based algorithm.

  • PDF

Object Extraction technique Using Belief Propagation Stereo Algorithm of Bidirectional Search based on Brightness (밝기기반 양방향 탐색기법의 신뢰전파 스테레오 알고리즘을 이용한 물체 추출 기법)

  • Choi, Young-Seok;Choi, Kyung-Seok;Kang, Hyun-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.313-314
    • /
    • 2007
  • In this paper, we suggest robust object extraction algorithm taking advantage of efficient Belief Propagation method. It does not get a disparity information because of uniform region and occlusion region etc. on initial depth map that use forward direction disparity information although is object area. Therefore, We run parallel backward disparity information and brightness information for certain object extraction.

  • PDF

Factor Graph-based Multipath-assisted Indoor Passive Localization with Inaccurate Receiver

  • Hao, Ganlin;Wu, Nan;Xiong, Yifeng;Wang, Hua;Kuang, Jingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.703-722
    • /
    • 2016
  • Passive wireless devices have increasing civilian and military applications, especially in the scenario with wearable devices and Internet of Things. In this paper, we study indoor localization of a target equipped with radio-frequency identification (RFID) device in ultra-wideband (UWB) wireless networks. With known room layout, deterministic multipath components, including the line-of-sight (LOS) signal and the reflected signals via multipath propagation, are employed to locate the target with one transmitter and a single inaccurate receiver. A factor graph corresponding to the joint posterior position distribution of target and receiver is constructed. However, due to the mixed distribution in the factor node of likelihood function, the expressions of messages are intractable by directly applying belief propagation on factor graph. To this end, we approximate the messages by Gaussian distribution via minimizing the Kullback-Leibler divergence (KLD) between them. Accordingly, a parametric message passing algorithm for indoor passive localization is derived, in which only the means and variances of Gaussian distributions have to be updated. Performance of the proposed algorithm and the impact of critical parameters are evaluated by Monte Carlo simulations, which demonstrate the superior performance in localization accuracy and the robustness to the statistics of multipath channels.

Multibaseline based Stereo Matching Using Texture adaptive Belief Propagation Technique (다중 베이스라인 기반 질감 적응적 신뢰도 전파 스테레오 정합 기법)

  • Kim, JinHyung;Ko, Yun Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.75-85
    • /
    • 2013
  • To acquire depth information using stereo vision, it is required to find correspondence points between stereo image pair. Conventional stereo vision systems usually use two cameras to get disparity data. Therefore, conventional stereo matching methods cannot resolve the tradeoff problem between accuracy and precision with respect to the length of baseline. Besides, belief propagation method, which is being used recently, has a problem that matching performance is dependent on the fixed weight parameter ${\lambda}$. In this paper, we propose a modified belief propagation stereo matching technique based on multi-baseline stereo vision to solve the tradeoff problem. The proposed method calculates EMAD(extended mean of absolute differences) as local evidence. And proposed method decides weight parameter ${\lambda}$ adaptively to local texture information. The proposed method shows higher initial matching performance than conventional methods and reached optimum solution in less iteration. The matching performance is increased about 4.85 dB in PSNR.

Estimating the Regularizing Parameters for Belief Propagation Based Stereo Matching Algorithm (Belief Propagation 기반 스테레오 정합을 위한 정합 파라미터의 추정방식 제안)

  • Oh, Kwang-Hee;Lim, Sun-Young;Hahn, Hee-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.112-119
    • /
    • 2010
  • This paper defines the probability models for determining the disparity map given stereo images and derives the methods for solving the problem, which is proven to be equivalent to an energy-based stereo matching. Under the assumptions the difference between the pixel on the left image and the corresponding pixel on the right image and the difference between the disparities of the neighboring pixels are exponentially distributed, a recursive approach for estimating the MRF regularizing parameter is proposed. Usually energy-based stereo matching methods are so sensitive to the parameter that it should be carefully determined. The proposed method alternates between estimating the parameter with the intermediate disparity map and estimating the disparity map with the estimated parameter, after computing it with random initial parameter. It is shown that the parameter estimated by the proposed method converges to the optimum and its performance can be improved significantly by adjusting the parameter and modifying the energy term.

The Region-of-Interest Based Pixel Domain Distributed Video Coding With Low Decoding Complexity (관심 영역 기반의 픽셀 도메인 분산 비디오 부호)

  • Jung, Chun-Sung;Kim, Ung-Hwan;Jun, Dong-San;Park, Hyun-Wook;Ha, Jeong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.79-89
    • /
    • 2010
  • Recently, distributed video coding (DVC) has been actively studied for low complexity video encoder. The complexity of the encoder in DVC is much simpler than that of traditional video coding schemes such as H.264/AVC, but the complexity of the decoder in DVC increases. In this paper, we propose the Region-Of-Interest (ROI) based DVC with low decoding complexity. The proposed scheme uses the ROI, the region the motion of objects is quickly moving as the input of the Wyner-Ziv (WZ) encoder instead of the whole WZ frame. In this case, the complexity of encoder and decoder is reduced, and the bite rate decreases. Experimental results show that the proposed scheme obtain 0.95 dB as the maximum PSNR gain in Hall Monitor sequence and 1.87 dB in Salesman sequence. Moreover, the complexity of encoder and decoder in the proposed scheme is significantly reduced by 73.7% and 63.3% over the traditional DVC scheme, respectively. In addition, we employ the layered belief propagation (LBP) algorithm whose decoding convergence speed is 1.73 times faster than belief propagation algorithm as the Low-Density Parity-Check (LDPC) decoder for low decoding complexity.

Articulated Human Body Tracking Using Belief Propagation with Disparity Map (신뢰 전파와 디스패리티 맵을 사용한 다관절체 사람 추적)

  • Yoon, Kwang-Jin;Kim, Tae-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.51-59
    • /
    • 2012
  • This paper suggests an efficient method which tracks articulated human body modeled with markov network using disparity map derived from stereo images. The conventional methods which only use color information to calculate likelihood for energy function tend to fail when background has same colors with objects or appearances of object are changed during the movement. In this paper, we present a method evaluating likelihood with both disparity information and color information to find human body parts. Since the human body part are cylinder projected to rectangles in 2D image plane, we use the properties of distribution of disparity of those rectangles that do not have discontinuous distribution. In addition to that we suggest a conditional-messages-update that is able to reduce unnecessary message update of belief propagation. Since the message update has comprised over 80% of the whole computation in belief propagation, the conditional-message-update yields 9~45% of improvements of computational time. Furthermore, we also propose an another speed up method called three dimensional dynamic models assumed the body motion is continuous. The experiment results show that the proposed method reduces the computational time as well as it increases tracking accuracy.

Real-Time Hand Pose Tracking and Finger Action Recognition Based on 3D Hand Modeling (3차원 손 모델링 기반의 실시간 손 포즈 추적 및 손가락 동작 인식)

  • Suk, Heung-Il;Lee, Ji-Hong;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.12
    • /
    • pp.780-788
    • /
    • 2008
  • Modeling hand poses and tracking its movement are one of the challenging problems in computer vision. There are two typical approaches for the reconstruction of hand poses in 3D, depending on the number of cameras from which images are captured. One is to capture images from multiple cameras or a stereo camera. The other is to capture images from a single camera. The former approach is relatively limited, because of the environmental constraints for setting up multiple cameras. In this paper we propose a method of reconstructing 3D hand poses from a 2D input image sequence captured from a single camera by means of Belief Propagation in a graphical model and recognizing a finger clicking motion using a hidden Markov model. We define a graphical model with hidden nodes representing joints of a hand, and observable nodes with the features extracted from a 2D input image sequence. To track hand poses in 3D, we use a Belief Propagation algorithm, which provides a robust and unified framework for inference in a graphical model. From the estimated 3D hand pose we extract the information for each finger's motion, which is then fed into a hidden Markov model. To recognize natural finger actions, we consider the movements of all the fingers to recognize a single finger's action. We applied the proposed method to a virtual keypad system and the result showed a high recognition rate of 94.66% with 300 test data.

Improvement of Disparity Map using Loopy Belief Propagation based on Color and Edge (Disparity 보정을 위한 컬러와 윤곽선 기반 루피 신뢰도 전파 기법)

  • Kim, Eun Kyeong;Cho, Hyunhak;Lee, Hansoo;Wibowo, Suryo Adhi;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.502-508
    • /
    • 2015
  • Stereo images have an advantage of calculating depth(distance) values which can not analyze from 2-D images. However, depth information obtained by stereo images has due to following reasons: it can be obtained by computation process; mismatching occurs when stereo matching is processing in occlusion which has an effect on accuracy of calculating depth information. Also, if global method is used for stereo matching, it needs a lot of computation. Therefore, this paper proposes the method obtaining disparity map which can reduce computation time and has higher accuracy than established method. Edge extraction which is image segmentation based on feature is used for improving accuracy and reducing computation time. Color K-Means method which is image segmentation based on color estimates correlation of objects in an image. And it extracts region of interest for applying Loopy Belief Propagation(LBP). For this, disparity map can be compensated by considering correlation of objects in the image. And it can reduce computation time because of calculating region of interest not all pixels. As a result, disparity map has more accurate and the proposed method reduces computation time.

Android malicious code Classification using Deep Belief Network

  • Shiqi, Luo;Shengwei, Tian;Long, Yu;Jiong, Yu;Hua, Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.454-475
    • /
    • 2018
  • This paper presents a novel Android malware classification model planned to classify and categorize Android malicious code at Drebin dataset. The amount of malicious mobile application targeting Android based smartphones has increased rapidly. In this paper, Restricted Boltzmann Machine and Deep Belief Network are used to classify malware into families of Android application. A texture-fingerprint based approach is proposed to extract or detect the feature of malware content. A malware has a unique "image texture" in feature spatial relations. The method uses information on texture image extracted from malicious or benign code, which are mapped to uncompressed gray-scale according to the texture image-based approach. By studying and extracting the implicit features of the API call from a large number of training samples, we get the original dynamic activity features sets. In order to improve the accuracy of classification algorithm on the features selection, on the basis of which, it combines the implicit features of the texture image and API call in malicious code, to train Restricted Boltzmann Machine and Back Propagation. In an evaluation with different malware and benign samples, the experimental results suggest that the usability of this method---using Deep Belief Network to classify Android malware by their texture images and API calls, it detects more than 94% of the malware with few false alarms. Which is higher than shallow machine learning algorithm clearly.