• Title/Summary/Keyword: belief in mathematics itself

Search Result 4, Processing Time 0.017 seconds

Influence of a Mathematical Philosophy Course on Preservice Elementary Teachers' Mathematical Beliefs (수리 철학 학습 과정이 예비 초등 교사의 수학적 신념에 미치는 영향)

  • Seo Kwanseog
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.6 no.1
    • /
    • pp.1-21
    • /
    • 2002
  • Teachers' teaching behavior is directly influenced by teachers' belief, and students' belief system is directly influenced by teachers' teaching behavior. There has been a question whether curriculum of teacher training university could help preservice teachers form positive belief system. The purpose of this study was to address this issue empirically. First, a questionnaire about mathematical belief was given to freshmen preservice teachers. They generally showed positive belief about mathematics to the degree that is not satisfactory and responded most positively in the sub-area of teaching mathematics from three sub-areas of mathematics itself, studying mathematics, and teaching mathematics. After studying a mathematical philosophy course, the freshmen preservice teachers were given the same questionnaire that they responded before studying the course. Belief about mathematics itself was changed very positively, and increase in the sub-area of mathematics itself was the largest. These results show that the mathematical philosophy course helped preservice teachers form positive belief system in mathematics.

  • PDF

Inductive Analysis Approach on Middle Grade Mathematics Pre-Service Teachers' Teaching Philosophies (중등 예비 수학 교사의 교육철학에 대한 귀납적 분석)

  • Han, Sunyoung
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.4
    • /
    • pp.599-615
    • /
    • 2015
  • Teachers' philosophies have not been emphasized enough in the current teacher education curriculum even though teacher's philosophy palys a critical role in schools and classrooms. The examination on pre-service teachers' teaching philosophies is necessary to improve teacher education curriculum so that teaching philosophies are often discussed in the courses of 'pedagogical content knowledge' as well as 'general education.' Therefore, the current study investigated 44 pre-service teachers' teaching philosophies, their sub domains, and relationships among the sub domains. The previous studies regarding mathematics teacher's teaching philosophy were more about 'teacher's belief' and employed deductive inference approach using surveys or questionnaires. These studies commonly pointed out that there were three major domains of 'belief on mathematics itself,' 'belief on teaching mathematics,' and 'belief on learning mathematics.' As these three domains of teacher's philosophy has been strengthened, there were very few studies examining the other potential domains of teacher's teaching philosophy. According to the findings of the present study, which employed inductive inference approach and pre-service teachers' free essay writing assignment, 'belief on teacher's role in mathematics classroom,' 'belief on the purpose of mathematics education,' and 'motivation to be a mathematics teacher' were additionally illuminated as sub domains of teacher's teaching philosophy. Moreover, the interrelationship among the sub-areas of teacher's teaching philosophy was disclosed. Specifically, 'belief on the purpose of mathematics education' and 'motivation to be a mathematics teacher' influenced the other sub domains. This implies that the relationships among the sub domains of teacher's teaching philosophy were more likely to be causal and vertical relationships rather than independent and parallel relationships. Finally, the findings from the current study provide implications indicating how pre-service teachers' teaching philosophies might be established in mathematics education courses for future research and education.

The Persuit of Rationality and the Mathematics Education (합리성의 추구와 수학교육)

  • Kang Wan
    • The Mathematical Education
    • /
    • v.24 no.2
    • /
    • pp.105-116
    • /
    • 1986
  • For any thought and knowledge, its growth and development has close relation with the society where it is developed and grow. As Feuerbach says, the birth of spirit needs an existence of two human beings, i. e. the social background, as well as the birth of body does. But, at the educational viewpoint, the spread and the growth of such a thought or knowledge that influence favorably the development of a society must be also considered. We would discuss the goal and the function of mathematics education in relation with the prosperity of a technological civilization. But, the goal and the function are not unrelated with the spiritual culture which is basis of the technological civilization. Most societies of today can be called open democratic societies or societies which are at least standing such. The concept of rationality in such societies is a methodological principle which completes the democratic society. At the same time, it is asserted as an educational value concept which explains comprehensively the standpoint and the attitude of one who is educated in such a society. Especially, we can considered the cultivation of a mathematical thinking or a logical thinking in the goal of mathematics education as a concept which is included in such an educational value concept. The use of the concept of rationality depends on various viewpoints and criterions. We can analyze the concept of rationality at two aspects, one is the aspect of human behavior and the other is that of human belief or knowledge. Generally speaking, the rationality in human behavior means a problem solving power or a reasoning power as an instrument, i. e. the human economical cast of mind. But, the conceptual condition like this cannot include value concept. On the other hand, the rationality in human knowledge is related with the problem of rationality in human belief. For any statement which represents a certain sort of knowledge, its universal validity cannot be assured. The statements of value judgment which represent the philosophical knowledge cannot but relate to the argument on the rationality in human belief, because their finality do not easily turn out to be true or false. The positive statements in science also relate to the argument on the rationality in human belief, because there are no necessary relations between the proposition which states the all-pervasive rule and the proposition which is induced from the results of observation. Especially, the logical statement in logic or mathematics resolves itself into a question of the rationality in human belief after all, because all the logical proposition have their logical propriety in a certain deductive system which must start from some axioms, and the selection and construction of an axiomatic system cannot but depend on the belief of a man himself. Thus, we can conclude that a question of the rationality in knowledge or belief is a question of the rationality both in the content of belief or knowledge and in the process where one holds his own belief. And the rationality of both the content and the process is namely an deal form of a human ability and attitude in one's rational behavior. Considering the advancement of mathematical knowledge, we can say that mathematics is a good example which reflects such a human rationality, i. e. the human ability and attitude. By this property of mathematics itself, mathematics is deeply rooted as a good. subject which as needed in moulding the ability and attitude of a rational person who contributes to the development of the open democratic society he belongs to. But, it is needed to analyze the practicing and pursuing the rationality especially in mathematics education. Mathematics teacher must aim the rationality of process where the mathematical belief is maintained. In fact, there is no problem in the rationality of content as long the mathematics teacher does not draw mathematical conclusions without bases. But, in the mathematical activities he presents in his class, mathematics teacher must be able to show hem together with what even his own belief on the efficiency and propriety of mathematical activites can be altered and advanced by a new thinking or new experiences.

  • PDF

Comparison of Mathematically Gifted Students and Non-gifted Students in Perception of Learning Environments and Affective Characteristics (수학영재학생들과 일반학생들의 학습관련 인식과 정의적 특성 비교)

  • Lee, Sae-Na;Yi, Seung-Hun;Han, Suk-Sil
    • Korean Journal of Child Studies
    • /
    • v.30 no.5
    • /
    • pp.73-85
    • /
    • 2009
  • The purpose of this research was to compare mathematically gifted students with non-gifted students in perception of learning environments, learning ability beliefs, and preference for problem-solving and task. Thirty-seven mathematically gifted students and 75 general students in middle school completed questionnaires about perceptions about mathematics. Data were analyzed by ${\chi}^2$ test and t-test. Compared with general students, mathematically gifted students estimated their talents for mathematics higher, studied mathematics more, expended more time and effort to solving difficult problems, put learning mathematics itself as their primary purpose for studying mathematics and regarded inappropriate environments as the major obstacle to mathematics study. Mathematically gifted students perceived their parents' support higher, solved problem creatively, and had higher preference for challenging tasks.

  • PDF