• Title/Summary/Keyword: behavioral simulation

Search Result 160, Processing Time 0.024 seconds

Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations

  • Eom, T.S.;Kim, M.H.;Bae, Y.H.;Cifuentes, C.
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.215-241
    • /
    • 2014
  • Steel catenary riser (SCR) is a popular/economical solution for the oil/gas production in deep and ultra-deep water. The behavioral characteristics of SCR have a high correlation with the motion of floating production facility at its survival and operational environments. When large motions of surface floaters occur, such as FPSO in 100-yr storm case, they can cause unacceptable negative tension on SCR near TDZ (touch down zone) and the corresponding elastic deflection can be large due to local dynamic buckling. The generation, propagation, and decay of the elastic wave are also affected by SCR and seabed soil interaction effects. The temporary local dynamic buckling vanishes with the recovery of tension on SCR with the upheaval motion of surface floater. Unlike larger-scale, an-order-of-magnitude longer period global buckling driven by heat and pressure variations in subsea pipelines, the sub-critical local dynamic buckling of SCR is motion-driven and short cycled, which, however, can lead to permanent structural damage when the resulting stress is greatly amplified beyond the elastic limit. The phenomenon is extensively investigated in this paper by using the vessel-mooring-riser coupled dynamic analysis program. It is found that the moment of large downward heave motion at the farthest-horizontal-offset position is the most dangerous for the local dynamic buckling.

Implementation of Crowd Behavior of Pedestrain based AB and CA mathematical model in Intelligent Game Environment (게임환경에서 AB 와 CA 수학모델을 이용한 보행자들의 집단행동 구현)

  • Kim, Seongdong;Kim, Jonghyun
    • Journal of Korea Game Society
    • /
    • v.19 no.6
    • /
    • pp.5-14
    • /
    • 2019
  • In this paper, we propose a modeling and simulation of group behavioral movement of pedestrians using Agent based and Cellular Automata model in intelligent game environment. The social behaviors of the crowds are complex and important, and based on this, the prototype game-model was implemented to show the crowd interaction on AB and CA in the game environment. Our experiment revealed the promise of group behaviour as a cost-efficient, yet accurate platform for researching crowd behaviour in risk situations with real models.

A design of BIST/BICS circuits for detection of fault and defect and their locations in VLSI memories (고집적 메모리의 고장 및 결함 위치검출 가능한 BIST/BICS 회로의 설계)

  • 김대익;배성환;전병실
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2123-2135
    • /
    • 1997
  • In this paepr, we consider resistive shorts on drain-source, drain-gate, and gate-source as well as opens in MOSFETs included in typical memory cell of VLSI SRAM. Behavior of memeory is observed by analyzing voltage at storage nodes of memeory and IDDQ(quiescent power supply current) through PSPICE simulation. Using this behavioral analysis, an effective testing algorithm of complexity O(N) which can be applied to both functional testing and IDDQ testing simultaeously is proposed. Built-In Self Test(BIST) circuit which detects faults in memories and Built-In Current Sensor(BICS) which monitors the power supply bus for abnormalities in quescent current are developed and imprlemented to improve the quality and efficiency of testing. Implemented BIST and BICS circuits can detect locations of faults and defects in order to repair faulty memories.

  • PDF

An optimized superscalar instruction issue architecture using the instruction buffer (명령어 버퍼를 이용한 최적화된 수퍼스칼라 명령어 이슈 구조)

  • 문병인;이용환;안상준;이용석
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.43-52
    • /
    • 1997
  • Processors using the superscalar rchitecture can achieve high performance by executing multipel instructions in a clock cycle. It is made possible by having multiple functional units and issuing multiple instructions to functional units simultaneously. But instructions can be dependent on one another and these dependencies prevent some instructions form being issued at the same cycle. In this paper, we designed an issue unit of a superscalar RISC microprocessor that can issue four instructions per cycle. The issue unit receives instructions form a prefetch unit, and issues them in order at a rate of as high as four instructions in one cycle for maximum utilization of functional units. By using an instruction buffer, the unit decouples instruction fetch and issue to improve instruction ussue rate. The issue unit is composed of an instruction buffer and an instruction decoder. The instruction buffer aligns and stores instructions from the prefetch unit, and sends the earliest four available isstructions to the instruction decoder. The instruction decoder decodes instructions, and issues them if they are free form data dependencies and necessary functional units and rgister file prots are available. The issue unit is described with behavioral level HDL (lhardware description language). The result of simulation using C programs shows that instruction issue rate is improved as the instruction buffer size increases, and 12-entry instruction buffer is found to be optimum considering performance and hardware cost of the instruction buffer.

  • PDF

Dynamic Behavioral Prediction of Escherichia coli Using a Visual Programming Environment (비쥬얼 프로그래밍 환경을 이용한 Escherichia coli의 동적 거동 예측)

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.39-49
    • /
    • 2004
  • When there is a lack of detailed kinetic information, dFBA(dynamic flux balance analysis) has correctly predicted cellular behavior under given environmental conditions with FBA and different ial equations. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. For this reason, the dFBA has limited the represen tation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. Moreover, to calculate optimal metabolic flux distribution which maximizes the growth flux and predict the b ehavior of cell system, linear programming package(LINDO) and spreadsheet package(EXCEL) have been used simultaneously. thses two software package have limited in the visual representation of simulation results and it can be difficult for a user to look at the effects of changing inputs to the models. Here, we descirbes the construction of hierarchical regulatory network with defined symbolsand the development of an integrated system that can predict the total control mechanism of regulatory elements (opero ns, genes, effectors, etc.), substrate concentration, growth rate, and optimal flux distribution with time. All programming procedures were accoplished in a visual programming environment (LabVIEW).

  • PDF

A Transient Model Analysis of a Fluorescent Lamp at Startup Time (형광램프의 기동시 과도특성 모델 해석)

  • 함중걸;백수현
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.5
    • /
    • pp.52-56
    • /
    • 1996
  • Fluorescent lamps are widely accepted to energy efficient commercial lighting applications. In designing a fluorescent lamp system, a ballast design heavily relies on the characteristic of a fluorescent lamp under consideration. Especially, at startup time, the transient characteristic of a fluorescent lamp puts much tighter specification of a design. In this paper, based on the transient characteristic at the startup time, a transient behavioral model of a fluorescent lamp is presented with an equivalent circuit. The model is applicable to the wide range of fluorescent lamps provided by different manufacturers. The experimental results are compared with the results provided by PSPICE simulation. The result shows the model is effective In practice. As a result, we could identify more accurate startup constraints to decide the design of either an electro mechanical or an electronic ballast.

  • PDF

The Study of Design Thinking as Foundation of Multidisciplinary Education (다학제 교육의 근간으로서 '디자인 사고'에 대한 연구)

  • Park, Sung-Mi;Kim, Sue-Hwa
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.1
    • /
    • pp.260-273
    • /
    • 2013
  • This study aims to reflect experts' opinions in analyzing a design thinking as foundation of multidisciplinary education. For this purpose, a delphi survey was conducted with 20 experts in three sessions from May 1 to June 25, 2012. To analyze the collected data, descriptive statistics, including frequency, percentage, the mean, and standard deviation were implemented, and internal reliability test on the survey instrument was carried out for statistical processing. The main results are as follows : First, the delphi analysis on intuitive thinking of design thinking suggested 7 items(to pursue the possibility of outside, to pursue the possibility of applying new forms of technology, content planning, facing a complex real-world phenomena etc.). Second, the delphi analysis on logical thinking of design thinking suggested 7 items(executed repeatedly, reasoning and verification, artificial intelligence, a decision support system etc.) Third, the delphi analysis on subjective thinking of design thinking suggested 9 items(user experience measuring, user satisfaction ratings, user requirements analysis, user interface design, behavioral responses of the human etc.). Fourth, the delphi analysis on objective information of design thinking suggested 8 items(information management system, simulation, production process, information exchange and sharing etc.). According to the results of the delphi analysis, design thinking can be seen as the foundation of multidisciplinary education. Suggestions were made for discussion about the main results and further researches.

Preliminary study on the ground behavior at shore connection of submerged floating tunnel using numerical analysis

  • Kang, Seok-Jun;Kim, Jung-Tae;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.133-142
    • /
    • 2020
  • Submerged floating tunnel (SFT) is a type of tunnel which causes the tunnel segments to float in the water. When the SFTs are connected to the ground, the connection between the SFT and the subsea bored tunnel is fragile due to the difference in behavioral characteristics between the two types of tunnels. Therefore, special design and construction methods are needed to ensure the stability of the area around the connection. However, since previous research on the stability of the connection site has not been undertaken enough, the basic step necessitates the evaluation of ground behavior at the shore connection. In this study, the numerical analysis targeting the shore connection between the subsea bored tunnel and the SFT was simulated. The strain concentration at the shore connection was analyzed by numerical simulation and the effects of several factors were examined. The results showed the instability in the ground close to the shore connection due to the imbalance in the behavior of the two types of tunnels; the location of the strain concentration varies with different environmental and structural conditions. It is expected that the results from this study can be utilized in future studies to determine weak points in the shore connection between the submerged floating tunnel and the subsea bored tunnel, and devise methods to mitigate the risks.

Development of integrated test facility for human factors experiments in nuclear power plant (원자력발전소에서의 인간공학적 실험평가를 위한 종합 실험설비 개발)

  • 오인석;이현철;천세우;박근옥;심봉식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.107-117
    • /
    • 1997
  • It is necessary to evaluate HMI inaspects of human factors in the design stage of MMIS(man machine interface system) and feedback the result of evaluation because operators performance is mainly influenced by the HMI. Therefore, the MMIS design should be reflected the operators psychological, behavioral and physiological characteristics in the interaction with human machine interface(HMI) in order to improve the safety and availability of the MMIS of a nuclear power plant(NPP) by reduction of human error. The development of human factors experimental evaluation techniques and integrated test facility(ITF) for the human factors evaluation become an important research field to resolve hi,am factors issues on the design of an advanced control room(ACR). We developed am ITF, which is aimed to experiment with the design of the ACR and the human machine interaction as it relates to the control of NPP. This paper presents the development of an ITF that consists of three rooms such as main test room(MTR), supporting test room(STR) and experiment control room(ECR). And, the ITF has a various facilities such as a human machine simulator(HMS), experimental measurement systems and data analysis and experiment evaluation supporting system(DAEXESS). The HMS consists of full-scope simulation model of Korean standard NPP and advanced HMI based on visual display nits (VDUS) such as touch color CRT, large scale display panel(LSDP), flat panel display unit and so on.

  • PDF

Behavioral Decentralized Optimum Controller Design for UAV Formation Flight (무인기 군집비행을 위한 행위기반 분산형 최적제어기 설계)

  • Kim, Seung-Keun;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.565-573
    • /
    • 2008
  • The behavior-based decentralized approach is considered for multi-UAV formation flight. It is assumed that each UAV has its own mission of flying to a specified region, while the distances between UAVs should be maintained. These two requirements may conflict with each other. To design the controller, coupled dynamics approach is applied to multi-UAVs with an assumption that each UAV can communicate with each other to share the state-information. Control gain matrices are optimized to acquire better performances of formation flying. To validate the proposed control approach, numerical simulation is performed for the waypoint-passing mission of multi-UAVs.