• 제목/요약/키워드: behavior of failure

검색결과 3,168건 처리시간 0.031초

Multi-scale Progressive Failure Analysis of Triaxially Braided Textile Composites

  • Geleta, Tsinuel N.;Woo, Kyeongsik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.436-449
    • /
    • 2017
  • In this paper, the damage and failure behavior of triaxially braided textile composites was studied using progressive failure analysis. The analysis was performed at both micro and meso-scales through iterative cycles. Stress based failure criteria were used to define the failure states at both micro- and meso-scale models. The stress-strain curve under uniaxial tensile loading was drawn based on the load-displacement curve from the progressive failure analysis and compared to those by test and computational results from reference for verification. Then, the detailed failure initiation and propagation was studied using the verified model for both tensile and compression loading cases. The failure modes of each part of the model were assessed at different stages of failure. Effect of ply stacking and number of unit cells considered were then investigated using the resulting stress-strain curves and damage patterns. Finally, the effect of matrix plasticity was examined for the compressive failure behavior of the same model using elastic, elastic - perfectly plastic and multi-linear elastic-plastic matrix properties.

점진적 파손해석을 이용한 탄소섬유강화 복합재료 볼트 조인트의 파손거동 예측 (Prediction of Failure Behavior for Carbon Fiber Reinforced Composite Bolted Joints using Progressive Failure Analysis)

  • 윤동현;김상덕;김재훈;도영대
    • Composites Research
    • /
    • 제34권2호
    • /
    • pp.101-107
    • /
    • 2021
  • 복합재료를 활용하여 설계되는 구조물은 각 부품들의 조립, 체결부를 갖게 된다. 이러한 연결 또는 조인트는 구조에서 잠재적으로 취약 부분이 될 수 있다. 복합재료 볼트 조인트의 파손모드는 구조 안전성을 위해 베어링 파손모드로 설계된다. 베어링 파손모드로 파괴되는 복합재료 볼트 조인트의 하중-변위 관계는 초기 파손 발생 후 비선형 거동을 보이며, 점진적인 파손을 보인다. 이러한 비선형적이고 점진적인 복합재료 볼트 조인트의 파손거동을 정확히 예측하기 위해 본 연구에서는 기존의 파손해석 모델에서 전단 손상변수 계산 과정에 수정을 수행하였다. 수정된 파손해석 모델을 이용하여 복합재료 볼트 조인트의 베어링 응력-베어링 변형률 결과를 예측하였으며, 기존 수정되지 않은 해석모델과 비교를 통해 수정된 모델의 유효성을 입증하였다.

형상비에 따른 비보강 조적벽체의 전단거동 평가에 관한 연구 (A Study on Evaluation of Shear Behavior of Unreinforced Masonry Wall with Different Aspect Ratio)

  • 이정한;강대언;양원직;우현수;권기혁;이원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.46-49
    • /
    • 2006
  • In general, the shear behavior mode of URM wall expresses four types of modes such as rocking failure, sliding shear failure, toe crushing failure, and diagonal tension failure. From the comparison of each equation according to the shear behavior modes, the failure modes based on the aspect ratio and vertical axial stress can be expected. The objectives of this study is to find out the shear behavior of URM wall with different aspect ratio. The test results show that the aspect ratio is understood as an important variable.

  • PDF

감육된 탄소강배관의 변형과 파괴거동 (Deformation and Fracture Behavior of Wall Thinned Carbon Steel Pipes)

  • 안석환;남기우
    • 한국해양공학회지
    • /
    • 제20권4호
    • /
    • pp.17-23
    • /
    • 2006
  • Monotonic four-point bending tests were conducted on straight pipe specimens, 102 mm in diameter with local wall thinning, in order to investigate the effects of the depth, shape, and location of wall thinning on the deformation and failure behavior of pipes. The local wall thinning simulated natural erosion/corrosion metal loss. The deformation and fracture behavior of the straight pipes with local wall thinning was compared with that of non wall-thinning pipes. The failure modes were classifiedas local buckling, ovalization, or crack initiation, depending on the depth, shape, and location of the local wall thinning. Three-dimensional elasto-plastic analyses were carried out using the finite element method. The deformation and failure behavior, simulated by finite element analyses, coincided with the experimental results.

농업용 저수지 월류시 제체와 여수토 접속부의 붕괴거동 (Behavior of Failure for Embankment and Spillway Transitional Zone of Agriculture Reservoirs due to Overtopping)

  • 노재진;이달원
    • 한국농공학회논문집
    • /
    • 제56권1호
    • /
    • pp.71-79
    • /
    • 2014
  • In this study, an experiment with large-scale model was performed according to raising the embankment in order to investigate the behavior of failure for embankment and spillway transitional zone due to overtopping. The pore water pressure, earth pressure, settlement and failure pattern by a rapid drawdown and overtopping were compared and analyzed. The pore water pressure and earth pressure at spillway transitional zone by overtopping increased a rapidly with the expansion of seepage erosion, but the crest showed a smally change due to effect of the inclined core type. And it is considered an useful data that can accurately estimate the possibility of failure of the reservoirs. A settlement at overtopping decreased a rapidly due to failure of crest. The relative settlement difference due to change of the water level at the upstream and downstream slope cause increase largely crack of crest. The behavior of failure by overtopping was gradually enlarged towards reservoirs crest from the bottom of the spillway transition zone, the inclined core after the raising the embankment was influenced significantly to prevent the seepage erosion.

Fracture properties and tensile strength of three typical sandstone materials under static and impact loads

  • Zhou, Lei;Niu, Caoyuan;Zhu, Zheming;Ying, Peng;Dong, Yuqing;Deng, Shuai
    • Geomechanics and Engineering
    • /
    • 제23권5호
    • /
    • pp.467-480
    • /
    • 2020
  • The failure behavior and tensile strength of sandstone materials under different strain rates are greatly different, especially under static loads and impact loads. In order to clearly investigate the failure mechanism of sandstone materials under static and impact loads, a series of Brazilian disc samples were used by employing green sandstone, red sandstone and black sandstone to carry out static and impact loading splitting tensile tests, and the failure properties subjected to two different loading conditions were analyzed and discussed. Subsequently, the failure behavior of sandstone materials also were simulated by finite element code. The good agreement between simulation results and experimental results can obtain the following significantly conclusions: (1) The relationship of the tensile strength among sandstone materials is that green sandstone < red sandstone < black sandstone, and the variation of the tensile sensitivity of sandstone materials is that green sandstone > red sandstone > black sandstone; (2) The mainly cause for the difference of dynamic tensile strength of sandstone materials is that the strength of crystal particles in sandstone material, and the tensile strength of sandstone is proportional to the fractal dimension; (3) The dynamic failure behavior of sandstone is greatly different from that of static failure behavior, and the dynamic tensile failure rate in dynamic failure behavior is about 54.92%.

모래에서 인장력을 고려한 Mohr-Coulomb 파괴규준 (Mohr-Coulomb Failure Criterion with Tensile Strength in Sand)

  • 김태형;이용수;황웅기;강기민;안영균
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.963-971
    • /
    • 2008
  • Unsaturated soil mechanics has been often used to find out a cause of failure (tensile failure) of retaining walls and hill slopes containing sandy soils. Checking shear strength is a popular method by considering suction stress developed form pore water menisci among the grains and saturated pockets of pore water under negative pressure. Linear Mohr-Coulomb failure criterion is generally adopted as a failure criterion. However, depending on relative density, stress history, and the magnitude of stress, the failure behavior of sand may not follow linear M-C frictional behavior. For stress in the large compressive ranges, say from tens to hundreds of kPa, the linear M-C criterion is an adequate representation for the shear strength behavior of sand. However, less than tens of kPa, the M-C criterion often can not be accurately represented. Depending on failure criterion, the uniaxial tensile strength is different over 100% relative error. For sand behavior under small compression regimes, therefore, such as under low or zero gravity, or under undergoing tensile failure in the crest area of hill slopes or behind retaining walls, it is important to consider the non-linear behavior.

  • PDF

측방변형지반속 매설관 주변지반의 파괴모드 (Soil Failure Mode of a Buried Pipe Around in Soil Undergoing Lateral Movement)

  • 홍원표;한중근
    • 한국환경복원기술학회지
    • /
    • 제5권5호
    • /
    • pp.11-21
    • /
    • 2002
  • A series of model tests is performed to evaluate the relationship between soil and a buried pipe in soil undergoing lateral movement. As the result of the model tests, a wedge zone and plastic flow zones could be observed in front of the pipe. And also an arc failure of cylindrical cavity could be observed at both upper and lower zones. Failure shapes in both cohesionless and cohesive soils are nearly same, which was investigated failure angle of $45^{\circ}+{\phi}/2$. In the cohesionless soil, the higher relative density produces the larger arc of cylindrical cavity. On the basis of failure mode observed from model tests, the lateral earth pressure acting on a buried pipe in soil undergoing lateral movement could be applying the cylindrical cavity extension mode. The deformation behavior of soils was typically appeared in three divisions, which are elastic zones, plastic zones and pressure behavior zones.

배관실험을 통한 국부감육 배관의 손상거동 평가 (An Evaluation of Failure Behavior of Pipe with Local Wall Thinning by Pipe Experiment)

  • 김진원;박치용
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.731-738
    • /
    • 2002
  • To understand failure behavior of pipe thinned by flow accelerated corrosion, in this study, the pipe failure tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, and the failure mode, load carrying capacity, and deformability were investigated. The tests were conducted under loading conditions of 4-points bending and internal pressure. The experimental results showed that the failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with thinning length was determined by stress type appled to the thinning area and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

Influence of nano-silica on the failure mechanism of concrete specimens

  • Nazerigivi, Amin;Nejati, Hamid Reza;Ghazvinian, Abdolhadi;Najigivi, Alireza
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.429-434
    • /
    • 2017
  • Failure of basic structures material is usually accompanied by expansion of interior cracks due to stress concentration at the cracks tip. This phenomenon shows the importance of examination of the failure behavior of concrete structures. To this end, 4 types of mortar samples with different amounts of nano-silica (0%, 0.5%, 1%, and 1.5%) were made to prepare twelve $50{\times}50{\times}50mm$ cubic samples. The goal of this study was to describe the failure and micro-crack growth behavior of the cement mortars in presence of nano-silica particles and control mortars during different curing days. Failure of mortar samples under compressive strength were sensed with acoustic emission technique (AET) at different curing days. It was concluded that the addition of nano-silica particles could modify failure and micro-crack growth behavior of mortar samples. Also, monitoring of acoustic emission parameters exposed differences in failure behavior due to the addition of the nanoparticles. Mortar samples of nano-silica particles revealed stronger shear mode characteristics than those without nanoparticles, which revealed high acoustic activity due to heterogeneous matrix. It is worth mentioning that the highest compressive strength for 3 and 7 test ages obtained from samples with the addition of 1.5% nano-silica particles. On the other hand maximum compressive strength of 28 curing days obtained from samples with 1% combination of nano-silica particles.