• Title/Summary/Keyword: bearings

Search Result 1,695, Processing Time 0.026 seconds

Experimental study on the thermal charateristics according to the pre-load and cooling condition for the high speed spindle with grease lubrication (그리스윤활 고속주축의 예압과 냉각조건에 따른 열특성의 실험적 고찰)

  • 최대봉;김수태;정성훈;김용기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.41-46
    • /
    • 2003
  • The important problem in high speed spindles is to reduce and minimize the thermal effect by motor and bail bearings. Thermal characteristics according to the bearing pre-load and cooling condition are studied for the test spindl with grease lubrication and high frequency motor. Bearing and motor we main heat generation, and heat generation by ball bearings as a function of load, viscosity and gyroscopic moment effect are considered. Temperature distribution and thermal displacement according to the speed of spindle are measured by thermocouple and gap sensor. The results show that the fitting pre-load and cooling temperature are very effective to minimize the thermal effect by motor an ball bearings.

  • PDF

Study on the Active Vibration Control of Magnetic Bearing System using $H_{\infty}$ Controller (능동 자기 베어링 제어를 위한 $H_{\infty}$ 제어기 설계)

  • 고무일;이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.303-306
    • /
    • 1997
  • Magnetic bearings have been adopted to support the rotor by electromagnetic force without mechanical contact and have many advantages. The application of the magnetic bearings have become more and more widespread in recent years. But magnetic bearings require feedback control for stable operation because they are inherently open loop unstable systems. In this study, H infinity controller has been applied for rotor-magnetic bearing system for vibration control. The result showed that H infinity controller has better performance than PID controller through simulations.

  • PDF

An Analysis of the Flow Characteristics and Deformation of a Multileaf Foil Bearing by Using the Fluid/structure Interaction Method (유동/구조 연성해석기법을 이용한 Foil Bearing의 변형 및 유동 특성 해석)

  • Kim Y.;Hur N.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.607-610
    • /
    • 2002
  • As machines become smaller and faster multileaf foil bearings are used to overcome the problems with heat, friction and wear Systems with foil bearings do not need a separate system for lubrication. These bearings are self acting and are therefore green systems. Until now, there have been many studies on the structural and dynamical performances. Therefore the object of the present study is to predict the flow and structural characteristics by using the Fluid/structure interaction method. The increase in RPM led to the increase in pressure, temperature difference, maximum velocity, Mach number, shear stress and torque. In the case of 90,000 RPM effects such as choking led to a non-lineararity in the system. Also the effect of eccentricity ratio was observed and showed that eccentricity increased the maximum pressure and the density difference while decreasing the shear stress and torque.

  • PDF

A Study on the Automatic Diagnosis System of Ball Bearings for Rotating Machinery (회전기계 볼베어링의 자동진단 시스템에 관한 연구)

  • 윤종호;김성걸;유정훈;이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1787-1798
    • /
    • 1995
  • Monitoring and diagnosis of the operating machine mean evaluating the condition of a machine such as the detection of the defects and the prediction of the time to failure in the machine elements, while it is running. In this study, a technique of automatic diagnosis using probability concept is studied and the analyses of the pattern comparison are introduced. An expert system, which is able to analyze the automatic identification of the multiple defects in the ball bearings, is also developed. Finally, to confirm the effectiveness of the programmed algorithms, some tests were made with specimens of the ball bearings involving the multiple defects. The proposed system reasonably predicts the defects.

Development of a Miniature Air-bearing Stage with a Moving-magnet Linear Motor

  • Ro, Seung-Kook;Park, Jong-Kweon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • We propose a new miniature air-bearing stage with a moving-magnet slotless linear motor. This stage was developed to achieve the precise positioning required for submicron-level machining and miniaturization by introducing air bearings and a linear motor sufficient for mesoscale precision machine tools. The linear motor contained two permanent magnets and was designed to generate a preload force for the vertical air bearings and a thrust force for the stage movement. The characteristics of the air bearings, which used porous pads, were analyzed with numerical methods, and a magnetic circuit model was derived for the linear motor to calculate the required preload and thrust forces. A prototype of a single-axis miniature stage with dimensions of $120\;(W)\;{\times}\;120\;(L)\;{\times}\;50\;(H)\;mm$ was designed and fabricated, and its performance was examined, including its vertical stiffness, load capacity, thrust force, and positioning resolution.

Design of A two-stage Compressor Supported by Air-lubricated Multi-leaf Foil Journal Bearings (공기윤활 다엽포일 제어널 베어링으로 지지된 이단 압축기의 설계)

  • 김태호;이용복;김창호;이남수;김한길
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.936-941
    • /
    • 2001
  • This paper deals with the design of oil-tree motor-driven two-stage centrifugal compressor supported by air-lubricated multi-leaf foil bearings. The design of this compressor is performed, based upon prediction of critical speeds, load capacity, and stability. It is demonstrated in this paper that multi-leaf foil bearings can be adopted to satisfactorily support this centrifugal compressor.

  • PDF

Determination of the Dynamic Coefficients of the Coupled Journal and Thrust Bearings by the Perturbation Method (수학적 섭동법을 이용한 저널과 스러스트가 연성된 유체 동압 베어링의 동특성 계수 해석)

  • Lee, Sang-Hoon;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.746-753
    • /
    • 2006
  • This paper proposes a method to calculate the stiffness and the damping coefficients of the coupled journal and thrust bearings. The Reynolds equations and their perturbation equations are transformed to the finite element equations by considering the continuity of pressure and flow at the interface between bearings. The Reynolds boundary condition is used in the numerical analysis to simulate the cavitation phenomena. The dynamic coefficients of the proposed method are compared with those of the numerical differentiation of the loads with respect to finite displacements and velocities of bearing center. It shows that the proposed method is more accurate and efficient than the differentiation method.

Fault Tolerant Control of Homopolar Magnetic Bearings Using Flux Isolation (자속 분리법을 이용한 동극형 자기베어링의 고장강건 제어)

  • Na, Uhn-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1102-1111
    • /
    • 2007
  • The theory for a fault-tolerant control of homopolar magnetic bearings is developed. New coil winding law is utilized such that control fluxes are isolated for an 8-pole homopolar magnetic bearing. Decoupling chokes are not required for the fault tolerant magnetic bearing since C-core fluxes are isolated. If some of the coils or power amplifiers suddenly fail, the remaining coil currents change via a distribution matrix such that the same magnetic forces are maintained before and after failure. Lagrange multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrix that maximizes the load capacity of the failed bearing. Some numerical examples of distribution matrices are provided to illustrate the theory. Simulations show that very much the same dynamic responses (orbits or displacements) are maintained throughout failure events while currents and fluxes change significantly.

Optimal design of the seismic protection system for isolated bridges

  • Losanno, Daniele;Spizzuoco, Mariacristina;Serino, Giorgio
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.969-999
    • /
    • 2014
  • Aim of the paper is the definition of optimal design parameters characterizing the isolation system of a bridge, both in the case of elastomeric (VI) and sliding bearings (SI), having viscoelastic or rigid-plastic behavior, respectively, installed between the piers and the deck. The problem is treated by means of an analytical approach. Using the frequency response analysis, a simple procedure is proposed to determine the optimal value of the viscous coefficient or the yield displacement of the isolators. The adequacy of the proposed procedure is finally verified through time-history analyses performed on a practical case under natural earthquakes.

Dynamic Analysis far Bridge Using the Experimental Results of Hysteretic Damping Bearing and Dynapot (교량용 내진 받침의 동특성 실험 결과를 이용한 교량의 해석)

  • 박동욱;윤정방;이인원;강용우;손만길
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.320-328
    • /
    • 2001
  • Base Isolation system is an effective design strategy that provides a practical substitute for the seismic design of bridge. In this study, the dynamic tests were performed on two kinds of aseismic bridge bearings : Hydampot (hysteretic damping bearing) and Dynapot . Then, the dynamic analysis was carried out far a bridge using the experimental results to estimate the seismic performance of the bearings. Analysis was performed for four types oi earthquake loadings. The results of the dynamic test and theoretical analysis indicate that the performance of both bridge bearings is appropriate fur the earthquake loading.

  • PDF