• Title/Summary/Keyword: bearing temperature

Search Result 779, Processing Time 0.033 seconds

Thermohydrodynamic Analysis Considering Flow Field Patterns Between Roughness Surfaces (미세 표면 거칠기에 지배되는 박막 유동장 형태를 고려한 윤활거동)

  • 김준현;김주현
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.167-177
    • /
    • 2003
  • The study deals with the development of a thermohydrodynamic (THD) computational procedure for evaluating the pressure, temperature and velocity distributions in fluid films with very rough geometry. A parametric investigation is performed to predict the bearing behaviors in the lubricating film having the absorbed layers and their interfaces determined by the rough surfaces with Gaussian distribution. The layers are expressed as functions of the standard deviations of each surface to characterize flow patterns between both the rough sur-faces. The velocity variations and the heat generation are assumed to occur in the central (shear) zone with the same bearing length and width. The coupled effect of surface roughness and shear zone dependency on hydrodynamic pressure and temperature has been found in non-contact mode. The procedure confirms the numerically determined relationship between the pressure and film gap on condition that its roughness magnitude is smaller than the fluid film thickness.

The Influence of Surface Roughness on Thermohydrodynamic Analysis (열유체 윤활해석에 의한 표면 거칠기가 마찰거동에 미치는 영향 고찰)

  • Kim, Joon-Hyun;Kim, Seong-Keol;Kim, Joo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.299-304
    • /
    • 2001
  • An approach is developed for parametric investigation of the influence of the surface roughness on thermohydrodynamic analysis with film conditions which systemically occur in journal bearings. A parametric investigation is performed for predicting the bearing behaviors such as pressure and temperature distributions in lubricating films between the stationary and moving surfaces determined by absorbed layers and interfaces on the statistical method for rough surface with Gaussian distribution. The layers expressing the effects of surface roughness are expressed as functions of the standard deviations (${\sigma}$) of each surface and surface orientation (j) to explain the flow patterns between both rough surfaces. The coupled effect of surface roughness and shear zone dependency on hydrodynamic pressure and temperature has been found by solving the present model in non-contact mode and contact mode, respectively.

  • PDF

오일제트윤활방식의 25,000rpm급 모터내장형 고속주축계의 윤활특성에 관한 연구

  • 이용희;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.841-845
    • /
    • 1995
  • In this study, a motor-integrated high-speed spindle system with .psi. 65mm*25,000rpm is developed by introducing the oil-jet lubrication method,ceramic angular contact ball bearing, a built-in motor and so on. And oil-jet lubrication experiments for evaluating the system performance are performed under various operation conditions. Especially, in order to establish the oil-jet lubrication conditions related to the development of a high-speed spindle system, the effects of oil supply rate and rotational spindle speed are investigated on the temperature rise, temperature distribution,motor current and so on.

  • PDF

The effect of Mo in SAW welding wire on the properties of low temperature material welds (저온용 강재 용접부의 물성에 미치는 SAW 용접 재료내의 Mo의 영향)

  • Seong, Hui-Jun;Gu, Yeon-Baek;Kim, Gyeong-Ju;Choe, Gi-Yeong
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.128-129
    • /
    • 2006
  • To investigate impact property characteristics on the low temperature plate weld metal, the two different plates of the same steel grade were welded and evaluated by Mo bearing and no Mo containing welding consumables. The results are summarized as follows; 1) Multi pass welded Mo bearing weldment was not satisfied with the requirement of tensile strength, while no Mo containing one was satisfied with it 2) In the plate butt weldment, the impact property of weld metal was highly affected by both the welding consumable and plate.

  • PDF

Determination of Welding Pressure in the Porthole Die Extrusion of Improved Al7003 Hollow Section Tubes (포트홀 다이를 이용한 개량된 Al7003 중공압출재의 접합압력결정)

  • Jeong C. S.;Jo H. H.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.74-77
    • /
    • 2000
  • Porthole die extrusion has a great advantage in the forming of hollow section tubes difficult to produce by conventional extrusion with a mandrel on the stem. Because of the complicated structure of die assembly, extrusion process as a forming of hollow section tubes has been investigated experimentally Therefore, analytic approaches that are useful in profitable die design and in the improvement of productivity are inevitably demanded Welding strength is affected by many parameters, which are such as extrusion ratio, extrusion speed, die shape, porthole number, bearing length, billet temperature and mandrel shape. In this paper, the parameters, which are such as billet temperature, bearing length and tube thickness, are examined. The welding pressures are examined through 3D simulation of non steady state and compared with experimental results.

  • PDF

Mechanical and Electrical Properties of Hydrate-bearing Sediments (하이드레이트 함유 퇴적물의 역학적 성질 및 지구물리 특성)

  • Lee, J.Y.;Francisca, F.;Santamarina, J.C.;Ruppel, C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.594-596
    • /
    • 2007
  • Using an oedometer cell instrumented to measure the evolution of electromagnetic properties, small strain stiffness, and temperature, we conducted consolidation tests on four types of sediments. The tested specimens include sediments with different gas hydrate saturation at four stages of loading. The test results show that the electromagnetic and mechanical properties of hydrate-bearing marine sediments are governed by the vertical effective stress, stress history, porosity, hydrate saturation, fabric, ionic concentration of the pore fluid, and temperature. The results also show that permittivity and electrical conductivity data can be combined to estimate hydrate volume fraction in laboratory sediments, methodology that might eventually be extended for estimation of hydrate concentrations in field settings.

  • PDF

Experimental study on the thermal characteristics according to the preload and cooling for the high speed spindle with oil mist lubrication (오일미스트윤활 고속주축의 예압과 냉각에 따른 열특성의 실험적 고찰)

  • 김수태;최대봉;정성훈;김용기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.428-432
    • /
    • 2004
  • The important problem in the high speed spindles is to reduce and minimize the thermal effect by the motor and ball bearings. Thermal characteristics according to the bearing preload and hollow shaft cooling are studied for the test spindle with the oil mist lubrication and high frequency motor. Bearings and motor e main heat generation, and heat generation by ball bearings as a function of load, viscosity and gyroscopic moment effect are considered. Temperature distribution and thermal displacement according to the speed of spindle are measured by thermocouple and gap sensor. The results show that the fitting preload and hollow haft cooling are very effective to minimize the thermal effect by the motor and ball bearings.

  • PDF

Heat Generation of Angular Contact Ball Bearings

  • Rhim, Yoon-Chul;Na, Hee-Hyeong
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.122-127
    • /
    • 1995
  • The heat generations of angular contact ball bearings are studied experimentally with numerical simulations. The temperature variations of inner and outer races and the temperature increase distributions are measured by using thermocouples for the spindle rotational speeds, preloads, viscosity of oils, and lubrication methods. The measured values from experiments are used to estimate the heat generation rates. The heat generation is focused mainly on the dominant sources which are robbings due to spin and gyro-moments of bearing balls, applied load and viscous friction. Oil-jet and oil-air lubrication methods are adopted using oils with different viscosities.

High Temperature Air Foil Bearings for Micro Turbine (마이크로 터빈용 고온 포일 베어링 개발)

  • Kim, Kyeong Su;Kim, Seung Woo;Lee, In
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.104-108
    • /
    • 2004
  • Micro turbine is an electric power generating system using a gas turbine whose rated power is under 300kW, and it is featured as a small, efficient. maintenance free and environment-friendly system. Air foil bearing has several advantages over conventional bearings for micro turbine because it is oilless and non-contact. Recently, air foil bearings for high temperature over $500^{\circ}C$ has been developed for the application of 65kW micro turbine system. In this paper, the development and current status are summarized in detail.

  • PDF

A Study on the Air Foil Journal Bearing Analysis with Perturbed Rarefaction Coefficients

  • Lee, Yong-Bok;Park, Dong-Jin;Kim, Chang-Ho;Jang, Gun-Hee
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.27-34
    • /
    • 2006
  • Knudsen number is the ratio of molecular mean free path versus mm thickness and the criterion to determine the flow form. When its value is lower than 0.01, the flow can be assumed to has no slip boundary condition. And in the case that the value is between 0.01 and 10, then the flow has slip boundary condition at both the adjacent walls. The condition of the air flow between the rotating journal and top foil in the air foil bearing is determined by the rotating speed and load, and the Knudsen number is also varied by those values. Because the molecular mean free path is variable to the pressure and temperature, more exact formulation is necessary to understand and analyze the flow regime. In this study, the analysis considering Knudsen number formulated with those variables (pressure, temperature and mm thickness) was executed. The approximate value was examined using the equation to confirm whether the flow has the slip or no-slip boundary condition. From the analytic investigation, it was decided to range approximately 0.01 to 1.0 and the flow can be supposed to have the slip boundary condition. Under the condition of the slip flow, the static characteristics of the air foil bearing were examined using modified Reynolds equations. The results were compared with those considering no slip condition. It shows that the slip condition makes the flow decelerates and the load carrying capacity decreases compared with no slip condition. And as the bearing number and eccentricity ratio increase, the load carrying capacity also increased at both the cases. From this result, it can be supposed that the bearing torque also increases. In the analysis of the dynamic characteristics, the perturbed Knudsen number was taken into consideration. Because the Knudsen number is expressed as the terms of each variable, the perturbed equation can be simply derived. The results of both cases considering and not considering Knudsen number were compared each other. In the case of the direct terms of the stiffness and damping coefficients, the difference between both cases was little and increased as the bearing number and eccentricity ratio increased. And the cross terms have less or more differences.