• Title/Summary/Keyword: bearing frequencies

Search Result 149, Processing Time 0.021 seconds

Identification of Defect Frequencies in Rolling Element Bearing Using Directional Spectra of Vibration Signals (구름 베어링의 결함 주파수 규명을 위한 방향 스펙트럼의 이용)

  • 박종포;이종원
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.393-400
    • /
    • 1999
  • Defect frequencies of rolling element bearings are experimentally investigated utilizing the two-sided directional spectra of the complex-valued vibration signals measured from the outer ring of defective bearings. The directional spectra make it possible to discern backward and forward defect frequencies. The experimental results show that the directional zoom spectrum is superior to the conventional spectrum in identification of bearing defect frequencies, in particular the inner race defect frequencies.

  • PDF

Diagnosis of a Journal Bearing Fault via Current Signature Analysis (전류신호 분석을 통한 저널베어링 이상상태 진단)

  • Park, Jin-Seok;Huh, Hyung;Jeong, Kyeong-Hoon;Lee, Kyu-Mahn;Park, Keun-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.119-122
    • /
    • 2005
  • A study on motor current signature analysis has been executed for monitoring the fault of journal bearing due to wear. The air gap eccentricity of motor produces specific frequencies in motor current, the supplied current frequency plus and minus rotational rotor frequency. The air gap eccentricity is simulated by the clearance of Journal bearing. The amplitudes of the specific frequencies increase with the increasing clearances. The amplitudes of the specific frequencies continue to increase over the wear limit that is used in the manufacturer of the test motor. Though clear relations between the amplitudes of the specific frequencies and the clearances are not obtained in this paper, the specific frequencies can be used as an indicator of a journal bearing fault. Further study is necessary to make out the quantitative relations between the specific frequencies and the clearances.

  • PDF

Nonlinear Vibration Model of Ball Bearing Waviness in a Rigid Rotor Supported by Multi-Row Ball Bearing Considering Five Degrees of Freedom (다수의 각접촉 볼베어링으로 지지된 5자유도 회전계에서 볼베어링의 Waviness에 의해 발생하는 비선형진동 해석모델)

  • 정성원;장건희
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.336-345
    • /
    • 2001
  • This research presents a nonlinear model to analyze the ball bearing nitration due to the waviness in a rigid rotor supported by multi-row ball bearings. The waviness of a ball and each races is modeled by the superposition of sinusoidal function, and the position vectors of inner and outer groove radius center are defined with respect to the mass center of the rotor in order to consider five degrees of freedom of a general rotor-bearing system. The waviness of a ball bearing is introduced to these position vectors to use the Hertzian contact theory in order to calculate the elastic deflection and nonlinear contact force resulting from the waviness while the rotor has translational and angular motion. They can be determined by solving the nonlinear equations of motion with five degrees of freedom by using the Runge-Kutta-Fehlberg algorithm. Numerical results of this research are validated with those of prior researchers. The proposed model can calculate the translational displacement as well as the angular displacement of the rotor supported by the multi-row ball bearings with waviness. It also characterizes the nitration frequencies resulting from the various kinds of waviness in rolling elements, the harmonic frequencies resulting from the nonlinear load-deflection characteristics of ball bearing. and the sideband frequencies resulting from the waviness interaction.

  • PDF

Analysis of NRRO Characteristics of a HDD Spindle System Supported by Ball Bearing at Elevated Temperature (온도 상승에 따른 볼 베어링으로 지지되는HDD 회전축계 NRRO 특성 해석)

  • 김동균;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.564-571
    • /
    • 2003
  • This research investigates how characteristics of ball bearing affect non-repeatable runout(NRRO) in a HDD spindle system at elevated temperature. It shows that the elevated temperature results in the increase of bearing contact angle and the decrease of bearing deformation due to the different thermal expansion rate of the components of the HDD spindle system. The increase of contact angle at elevated temperature is so small that the variation of bearing frequencies is negligible. On the other hand, the decrease of bearing deformation at elevated temperature reduces the stiffness of ball bearing and the natural frequencies of HDD spindle system consequently, which changes the amplitude and the frequency distribution of NRRO.

  • PDF

Dynamic Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (I)-Vibration Analysis- (Waviness가 있는 볼베어링으로 지지된 회전계의 동특성해석 (I) -진동 해석-)

  • Jeong, Seong-Weon;Jang, Gun-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2636-2646
    • /
    • 2002
  • This research presents an analytical model to investigate vibration due to ball bearing waviness in a rotating system supported by two or more ball bearings, taking account of the centrifugal force and gyroscopic moment of the ball. The waviness of rolling elements is modeled by the sinusoidal function, and it is incorporated into the position vectors of the race curvature center. The Hertzian con tact theory is applied to calculate the elastic deflection and nonlinear contact force while the rotor has translational and angular motions. Both the centrifugal force and gyroscopic moment of the ball and the waviness of the rolling elements are included in the kinematic constraints and force equilibrium equations of a ball to derive the nonlinear governing equations of the rotor, which are solved by using the Runge-Kutta-Fehlberg algorithm to determine the new position of the rotor. The proposed model is validated by the comparison of the results of the prior researchers. This research shows that the centrifugal force and gyroscopic moment of the ball plays the important role in determining the bearing frequencies, i.e. the principal frequencies, their harmonics and the sideband frequencies resulting from the waviness of the rolling elements of ball bearing. It also shows that the bearing vibration frequencies are generated by the waviness interaction not only between the rolling elements of one ball bearing but also between those of two or more ball bearings constrained by the rotor.

Analysis of NRRO Caused by Ball Bearing in a HDD Spindle System at Elevated Temperature (볼 베어링에 의해 발생하는 HDD 회전축계 NRRO의 온도 상승에 따른 변화)

  • Kim, D.K.;Jang, G.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.792-800
    • /
    • 2004
  • This research investigates the non-repeatable runout (NRRO) of a HDD spindle system at elevated temperature by analyzing the characteristics of a ball bearing and the natural vibration characteristics of a HDD spindle system due to the effect of elevated temperature. It shows that the elevated temperature results in the increase of the contact angle and the decrease of the deformation of the ball bearing in a HDD spindle system. The variation of bearing frequencies, which are dependent on the cosine function of contact angle, is almost negligible at elevated temperature. However, the decrease of bearing deformation at elevated temperature reduces the stiffness of the ball bearing and the natural frequencies of a HDD spindle system consequently. The latter has a significant effect on the amplitude and the frequency distribution of NRRO at elevated temperature.

A Mode Sorting Method Using the MAC of a Rotor-bearing System (MAC을 이용한 회전축계 시스템의 모드정렬 방법)

  • Lim, Jonghyuk;Kim, Minsung;Lee, Kyuho;Park, Chuljun;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.329-336
    • /
    • 2015
  • This paper presents a sorting method of mode vectors and natural frequencies about a rotor-journal bearing system. The rotor is solved by the finite element method, the bearing stiffness and damping coefficient are solved by the finite difference method. At any rotation speed section through the eigenvalue analysis of the system, mode vectors and natural frequencies not sorted are confirmed via the Campbell diagram and the MAC(modal assurance criterion). To sort mode vectors and natural frequencies of the section, a mode sorting method is presented through a method of rearranging the MAC of the mode vectors. Finally, the mode vectors and the natural frequencies are sorted by using the presented method, these are verified through the MAC.

Analytical Theory of Ball Bearing Considering Waviness of Rolling Elements (구름요소의 Waviness 를 고려한 볼베어링 해석 이론)

  • 정성원;장건희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.275-286
    • /
    • 2001
  • The research presents an analytical theory to calculate the characteristics of the bal bearing with waviness in its rolling elements considering the centrifugal force and gyroscopic moment of bal. The effects of centrifugal force and gyroscopic moment are introduced to the kinematic constraints and force equilibrium equations. and the waviness of rolling elements is modeled by sinusoidal function to calculate the contact force at each ball. The numerical solutions of governing equation of berating due to waviness are calculated by using the Newton-Raphson method. The accuracy of the research is validated by comparing the contact force. contact angle in case of considering the centrifugal force and gyroscopic moment of bal and the contact force and vibration frequencies in cases of considering waviness with the prior researches respectively. It investigates the stiffness, contact force. displacement and vibration frequencies of the ball bearing considering not only the centrifugal force and gyroscopic moment of ball but also the waviness of the rolling elements.

  • PDF

Analysis of Dynamic Characteristics of a HDD Spindle System Supported by Ball Bearing Due to Temperature Variation (온도 변화에 따른 HDD 회전축계 동특성 해석)

  • 김동균;장건희;한재혁;김철순
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.805-812
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. Finite element model is developed for the rotating and stationary parts of a HDD spindle system separately to determine their thermal deformations by using ANSYS, a finite element program. Then, the relative position of the rotating part with respect to the stationary part is determined by solving the equilibrium equation of the contact force between upper and lower ball bearings. The validity of the proposed method is verified by comparing the theoretical natural frequencies of a HDD spindle system with the experimental ones before and after temperature variation. It shows that the elevated temperature results in the increase of contact angle and the decrease of bearing deformation, contact force and bearing stiffness, which result in the decrease of the natural frequencies of a HDD spindle system.

Analysis of Dynamic Characteristics of a HDD Spindle System Supported by Ball Bearing Due to Temperature Variation (온도 변화에 따른 HDD 회전축계 동특성 해석)

  • 김동균;장건희;한재혁;김철순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.578-584
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. Finite element model is developed fer the rotating and stationary parts of a HDD spindle system separately to determine their thermal deformations by using ANSYS, a finite element program. Then, the relative position of the rotating part with respect to the stationary part is determined by solving the equilibrium equation of the contact force between upper and lower ball bearings. The validity of the proposed method is verified by comparing the theoretical natural frequencies of a HDD spindle system with the experimental ones before and after temperature variation. It shows that the elevated temperature results in the increase of contact angle and the decrease of bearing deformation, contact force and bearing stiffness, which result in the decrease of the natural frequencies of a HDD spindle system.

  • PDF