• 제목/요약/키워드: bearing fault diagnosis

검색결과 83건 처리시간 0.021초

진동의 주파수분석을 통한 결함 식별 - 회전기계를 중심으로- (Defect Identification through Frequency Analysis of Vibration -In Case of Rotary Machine_)

  • 정윤성;왕지남;김광섭
    • 한국정밀공학회지
    • /
    • 제12권11호
    • /
    • pp.82-90
    • /
    • 1995
  • This paper pressents a condition-based maintenance (CBM) method through bibration analysis. The well known frequency analysis is employed for performing machine fault diagnosis. The statistical control chart is also applied for analyzing the trend of the bearing wear. Vibration sensors are attached to prototype machine and signals are continuously monitored. The sampled data are utilized to evaluate how well the fast fourier transform(FFT) and the statistical control chart techniques could be used to identify defects of machine and to analyze the machine degradation. Experimental results show that the propowed approach could classify every mal-function and could be utilized for real machine diagnosis system.

  • PDF

차량용 휠 베어링의 결함 예측을 위한 센서 모듈 및 진단 연구 (A Study on Sensor Module and Diagnosis of Automobile Wheel Bearing Failure Prediction)

  • 황재용;설예인
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.47-53
    • /
    • 2020
  • 최근 모니터링 및 예측 시스템을 이용하여 사전에 결함을 발견하고 이를 경고하는 시스템이 활발히 연구되고 있다. 차량 안전 관리에 있어서도 예측 결함 분석 기술을 적용하여 자동차 휠 베어링의 고장 유무 및 고장 유형을 조기에 경고하는 시스템이 필요하다. 본 논문에서는 휠 베어링과 결합 된 센서 모듈과 각 센서 모듈에서 차량 가속 정보 및 진동 정보를 수집, 저장 및 분석하는 진단 시스템을 제시하였다. 제안된 센서 모듈은 저비용으로 차량의 휠 베어링 상태를 모니터링하며, 이렇게 수집된 데이터를 활용하여 진단 및 고장 예측 기능을 수행하는 방안을 연구하였다. 개발된 센서 모듈과 예측 분석 시스템은 가진 테스트 장비 및 실제 차량을 이용하여 테스트하고 그 유효성을 평가하였다.

전동기 전류분석을 통한 회전자회로 고장진단에 관한연구 (A study on the diagnosis of rater faults through the current analysis)

  • 이영수;;이간운;김현수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.801-803
    • /
    • 2003
  • Faults in induction motors can be categorized into mechanical faults and electrical faults, and most mechanical faults result from inferiority or damage of the bearing, while most electrical faults derive from insulation faults of stator windings and rotor bar cracks. When a crack appears on the rotor bar, its efficiency decreases, which increases energy consumption and temperature, reducing the life span of the motor. This kind of fault can only be sensed by the protection relay after the condition has worsened to a certain degree, bringing massive economic loss. This paper will deal with the diagnosis method of rotor bar faults through the load current analysis method of the motor used during operation.

  • PDF

Fault Diagnostics Algorithm of Rotating Machinery Using ART-Kohonen Neural Network

  • 안경룡;한천;양보석;전재진;김원철
    • 한국소음진동공학회논문집
    • /
    • 제12권10호
    • /
    • pp.799-807
    • /
    • 2002
  • The vibration signal can give an indication of the condition of rotating machinery, highlighting potential faults such as unbalance, misalignment and bearing defects. The features in the vibration signal provide an important source of information for the faults diagnosis of rotating machinery. When additional training data become available after the initial training is completed, the conventional neural networks (NNs) must be retrained by applying total data including additional training data. This paper proposes the fault diagnostics algorithm using the ART-Kohonen network which does not destroy the initial training and can adapt additional training data that is suitable for the classification of machine condition. The results of the experiments confirm that the proposed algorithm performs better than other NNs as the self-organizing feature maps (SOFM) , learning vector quantization (LYQ) and radial basis function (RBF) NNs with respect to classification quality. The classification success rate for the ART-Kohonen network was 94 o/o and for the SOFM, LYQ and RBF network were 93 %, 93 % and 89 % respectively.

적외선열화상을 이용한 베어링 실시간 손상검출 상태감시의 전산수치해석 비교 (Comparison of FEA with Condition Monitoring for Real-Time Damage Detection of Bearing Using Infrared Thermography Techniques)

  • 김호종;김원태
    • 비파괴검사학회지
    • /
    • 제35권3호
    • /
    • pp.185-192
    • /
    • 2015
  • 동적하중에서의 베어링 결함에 대한 실시간 진단기술은 상대적으로 저조하다. 따라서 볼베어링의 이상상태 현상으로 인한 온도 상승 및 진동 증가 등을 사전에 검출하는 기술이 필요하며, 회전체에 대한 운전상태 감시 및 손상 진단을 통해 발전설비의 원활한 운전을 기할 수 있는 검출 기술이 필요하다. 적외선 열화상 실험과 더불어 ANSYS를 이용한 유한요소해석으로부터 실험과 동일한 베어링을 구조 설계 및 해석하여 데이터를 분석함으로써 열화상 기술로 얻은 데이터의 신뢰성을 확보하였다.

회전기계 결함신호 진단을 위한 신호처리 기술 개발 (Signal Processing Technology for Rotating Machinery Fault Signal Diagnosis)

  • 안병현;김용휘;이종명;이정훈;최병근
    • 한국소음진동공학회논문집
    • /
    • 제24권7호
    • /
    • pp.555-561
    • /
    • 2014
  • Acoustic Emission technique is widely applied to develop the early fault detection system, and the problem about a signal processing method for AE signal is mainly focused on. In the signal processing method, envelope analysis is a useful method to evaluate the bearing problems and wavelet transform is a powerful method to detect faults occurred on rotating machinery. However, exact method for AE signal is not developed yet for the rotating machinery diagnosis. Therefore, in this paper two methods which are processed by Hilbert transform and DET for feature extraction. In addition, we evaluate the classification performance with varying the parameter from 2 to 15 for feature selection DET, 0.01 to 1.0 for the RBF kernel function of SVR, and the proposed algorithm achieved 94 % classification of averaged accuracy with the parameter of the RBF 0.08, 12 feature selection.

진동 데이터 기반 설비고장예지를 위한 신호처리기법 (A Signal Processing Technique for Predictive Fault Detection based on Vibration Data)

  • 송예원;이홍성;박훈석;김영진;정재윤
    • 한국전자거래학회지
    • /
    • 제23권2호
    • /
    • pp.111-121
    • /
    • 2018
  • 항공기 엔진, 풍력발전기, 모터 등 회전기기에서 발생하는 많은 문제들은 진동이나 소음과 같은 신호 데이터를 측정하여 이상감지를 할 수 있으며, 주파수 분석 등 여러 가지 신호처리가 데이터 전처리 단계에서 필요하다. 본 논문에서는 진동 데이터를 분석하여 설비 이상상태를 감지하는 기법을 소개한다. 정상상태 데이터를 기반으로 마할라노비스 거리를 측정하여 이상상태 유무를 모니터링 하는 방식을 사용한다. 특히 신호 데이터의 전처리 기법들을 도입하여 이상상태 감지의 성능을 개선할 수 있음을 보여준다. 전처리 단계에서 신호 데이터 수집 과정에서 발생한 누설오차(leakage)를 없애기 위해 해밍 윈도우(Hamming window)를 적용하고, 신호 데이터의 원신호인 포먼트(formant)를 분리하기 위하여 켑스트럼(cepstrum) 분석을 실시한다. IMS 베어링 진동 공개데이터를 대상으로 시간 구간별로 6가지 통계지표를 추출한 후 마할라노비스 거리 분류기를 적용하여 성능을 검증하였다. 제시된 신호처리 전처리 기법을 적용함으로써 성능이 획기적으로 향상되는 것을 실험에서 보여주었다.

베어링 잔존 수명 예측을 위한 주파수 에너지 기반 특징신호 추출 (Feature Extraction for Bearing Prognostics based on Frequency Energy)

  • 김석구;최주호;안다운
    • 한국ITS학회 논문지
    • /
    • 제16권2호
    • /
    • pp.128-139
    • /
    • 2017
  • 철도는 항공기, 선박 등과 더불어 대표적 대중교통 수단으로서 최근 고속 철도의 등장으로 인해 그 비중이 점점 더 높아지고 있으며, 아울러 대형사고의 위험 또한 증가하고 있다. 이중에서 철도 차량의 차축 베어링은 높은 안전성이 요구되는 부품으로서 최근 이의 고장예측을 위한 건전성 관리기술(Prognostics and Health Management, PHM)에 많은 연구가 집중되고 있다. PHM은 센서를 통해 얻은 데이터로부터 결함관련 특징신호를 추출하고 현재의 고장수준 진단과 미래의 고장싯점을 예측하는 기술로서, 이중에서 가장 중요한 부분은 올바른 특징신호를 추출하는 것이다. 그러나 지금까지의 특징신호들은 잡음으로 인한 심한 변동이나 비단조 경향으로 인해 고장예측에 이용하기에 부족한 점이 있었다. 본 연구에서는 이를 극복하기 위해 주파수 에너지 이동현상을 기반으로 정보 엔트로피를 특징신호로 사용하는 새로운 특징신호 추출법을 개발하고 IEEE 2012 PHM 경진대회에서 공개된 FEMTO 베어링 수명시험 데이터를 대상으로 기존의 특징신호들과 고장예측 성능비교를 함으로써 그 우수성을 검증하였다.

3상 농형 유도전동기 회전자 바의 고장진단에 관한 연구 (A Study on The Diagnosis of Broken Rotor Bars in Three Phase Squirrel-Case Induction Motor)

  • 김근웅;권중록;이갑재;김완기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.635-637
    • /
    • 2001
  • The faults of the squirrel cage induction motor is grew increasingly complex as the faults resulting in the shorting of a stator winding and the broken rotor bar or cracked rotor end ring, bearing faults, and so on. The users of electrical machines initially relied on simple protections such as over-current, over-voltage, earth-fault, etc. to ensure safe and reliable operation. but this method cause heavy financial losses and the threat of safety therefore it has now become very important to diagnose faults at there very inception. in this paper, we are going to discuss the detection method of broken rotor bar of squirrel cage induction motor by the motor current signal analysis(MCSA) and the opening terminal voltage signal analysis.

  • PDF

적응신호처리에 의한 주행전기동차의 진동신호해석 (Vibration Signal Analysis of Running Electric Train using Adaptive Signal Processing)

  • 최연선;이봉현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.143-150
    • /
    • 1999
  • The vibration signals of driving parts of electric train are distorted its signal patterns due to the impact components, which occurs when wheel passes rail joints. An elimination method of the impact components is investigated using adaptive signal processing technique in this study. The result shows that adaptive interference canceling method seems to be more effective than line enhancement technique. The application of adaptive interference canceling method to the signal measured at bogie shows that the extractions of the signals of driving parts of traction motor, reduction gear, and axle bearing are successful. Therefore, only the signals of bogie, which is the place to attach an accelerometer easily, is sufficient for the fault diagnosis and the safety evaluation of electric train. Also, adaptive interference canceling method can be applicable to evaluate the performance of vibration isolation between bogie and car body and to investigate the characteristics of indoor sound.

  • PDF