• Title/Summary/Keyword: beam-to-column joint

Search Result 483, Processing Time 0.029 seconds

Hysteretic Behavior of Wide Beam-Column joint (외부 넓은 보-기둥 접합부의 이력거동에 관한 연구)

  • Seo Soo-Yeon;Kim Jong-Sun;Yoon Yong-Dae;Lee Woo-Jin;Kim Sang-Sik;Yoon Seung-Joe
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.623-626
    • /
    • 2004
  • The purpose of this paper is to study the effect of longitudinal reinforcement for anchoring in the wide beam column joint as wall as the contribution of depth of spandrel beam to hysteretic behavior of the wide beam column joint. From the test it was shown that the specimen with anchorage in the joint had higher strength than the specimen with normal hook anchorage. Specimen with debonded reinforcement at out of Id from column face failed showing moved plastic hinge and less strength than normal specimen. However, the dissipated energy was increased $11\%$.

  • PDF

Experimental study on through-beam connection system for concrete filled steel tube column-RC beam

  • Tian, Chunyu;Xiao, Congzhen;Chen, Tao;Fu, Xueyi
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.187-201
    • /
    • 2014
  • A new through-beam connection system for a concrete filled steel tube column to RC beam is proposed. In this connection, there are openings on the steel tube while the reinforced concrete beams are continuous in the joint zone. The moment and shear force at the beam ends can be transferred to column by continuous rebar and concrete. The weakening of the axial load and shear bearing capacity due to the opening of the steel tube can be compensated by strengthening steel tube at joint zone. Using this connection, construction of the joint can be made more convenient since welding and hole drilling in situ can be avoided. Axial compression and reversed cyclic loading tests on specimens were carried out to evaluate performance of the new beam-column connection. Load-deflection performance, typical failure modes, stress and strain distributions, and the energy dissipation capacity were obtained. The experimental results showed that the new connection have good bearing capacity, superior ductility and energy dissipation capacity by effectively strengthen the steel tube at joint zone. According to the test and analysis results, some suggestions were proposed to design method of this new connection.

Mechanical Bar Anchorage of the PC Beam in Beam-Column Joint Using Plates and Bolts (지지대 및 제결볼트를 이용한 프리캐스트 콘크리트 골조구조의 보 하단 철근 정착공법 개발)

  • 유영찬;최근도;김긍환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.539-544
    • /
    • 2000
  • The purpose of this study is to develop the mechanical anchorage, namely MAB-BOP (Mechanical Anchorage of 90$^{\circ}$ Hooked Bars with BOlt nad Plate) of the beam-column joint in precast concrete framed structures. Six specimens simulating typical interior beam-column joints were tested to investigate the mechanical characteristics of MAB-BOP. Of primary interest was the measurement of the slip of the anchored bar. Th load-slip curve obtained from this test were used to compare the mechanical performances of the different anchoring methods. Based on the test results, it was found that MAB-BOP showed sufficient anchoring strength capacity compared to 90$^{\circ}$ hooked bar method. So, MAB-BOP can be used as the anchoring methods of the reinforcing bars in PC beam-column joint.

  • PDF

An Experimental Study on Shear on Shear Capacity of Reinforced Concrete Exterior Beam-Column Joint with High Strength Concrete (고강도 재료를 사용한 철근 콘크리트 보.기둥 외부접합부의 전단내력에 관한 실험적 연구)

  • 박기철;황홍순;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.59-66
    • /
    • 1992
  • The objective of this investigation was to dvaluater the factors influencing the vasic shear strength of Exterior Beam-Column Joint. Reversec cyclic loading were carride out for 10 reinforced concrete Exterior Beam-Column subassemblages. All the specimens finally failed in joint shear.

  • PDF

Cyclic loading test of abnormal joints in SRC frame-bent main building structure

  • Wang, Bo;Cao, Guorong;Yang, Ke;Dai, Huijuan;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.417-430
    • /
    • 2021
  • Due to functional requirements, SRC column-RC beam abnormal joints with characteristics of strong beam weak column, variable column section, unequal beam height and staggered height exist in the Steel reinforced concrete (SRC) frame-bent main building structure of thermal power plant (TPP). This paper presents the experimental results of these abnormal joints through cyclic loading tests on five specimens with scaling factor of 1/5. The staggered height and whether adding H-shaped steel in beam or not were changing parameters of specimens. The failure patterns, bearing capacity, energy dissipation and ductile performance were analyzed. In addition, the stress mechanism of the abnormal joint was discussed based on the diagonal strut model. The research results showed that the abnormal exterior joints occurred shear failure and column end hinge flexural failure; reducing beam height through adding H-shaped steel in the beam of abnormal exterior joint could improve the crack resistance and ductility; the abnormal interior joints with different staggered heights occurred column ends flexural failure; the joint with larger staggered height had the higher bearing capacity and stiffness, but lower ductility. The concrete compression strut mechanism is still applicable to the abnormal joints in TPP, but it is affected by the abnormal characteristics.

Improvement of the earthquake resistance of R/C beam-column joints under the influence of P-△ effect and axial force variations using inclined bars

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.389-410
    • /
    • 2004
  • In this study, theoretical and experimental results are presented which were obtained during an investigation of the influence of the $P-{\Delta}$ effect that was caused by the simultaneous changing of the axial load P of the column and the lateral displacement ${\Delta}$ in the external beam-column joints. The increase or decrease of ${\Delta}$ was simultaneous with the increase or decrease of the axial compression load P and caused an additional influence on the aseismic mechanical properties of the joint. A total of 12 reinforced concrete exterior beam-column subassemblies were examined. A new model, which predicts the beam-column joint ultimate shear strength, was used in order to predict the seismic behaviour of beam-column joints subjected to earthquake-type loading plus variable axial load and $P-{\Delta}$ effect. Test data and analytical research demonstrated that axial load changes and $P-{\Delta}$ effect during an earthquake cause significant deterioration in the earthquake-resistance of these structural elements. It was demonstrated that inclined bars in the joint region were effective for reducing the unfavourable impact of the $P-{\Delta}$ effect and axial load changes in these structural elements.

Behaviour and design of high-strength steel beam-to-column joints

  • Li, Dongxu;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • This paper presents a finite element model for predicting the behaviour of high-strength steel bolted beam-to-column joints under monotonic loading. The developed numerical model considers the effects of material nonlinearities and geometric nonlinearities. The accuracy of the developed model is examined by comparing the predicted results with independent experimental results. It is demonstrated that the proposed model accurately predicts the ultimate flexural resistances and moment-rotation curves for high-strength steel bolted beam-to-column joints. Mechanical performance of three joint configurations with various design details is examined. A parametric study is carried out to investigate the effects of key design parameters on the behaviour of bolted beam-to-column joints with double-extended endplates. The plastic flexural capacities of the beam-to-column joints from the experimental programme and numerical analysis are compared with the current codes of practice. It is found that the initial stiffness and plastic flexural resistance of the high-strength steel beam-to-column joints are overestimated. Proper modifications need to be conducted to ensure the current analytical method can be safely used for the bolted beam-to-column joints with high-performance materials.

Investigation of shear strength models for exterior RC beam-column joint

  • Parate, Kanak;Kumar, Ratnesh
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.475-514
    • /
    • 2016
  • Various models have been proposed by several researchers for predicting the exterior RC beam-column joint shear strength. Most of these models were calibrated and verified with some limited experimental database. From the models it has been identified that the joint shear strength majorly depends on ten governing parameters. In the present paper, detailed investigation of twelve analytical models for predicting shear strength of exterior beam-column joint has been carried out. The study shows the effect of each governing parameter on joint shear strength predicted by various models. It has been observed that the consensus on effect of few of the governing parameters amongst the considered analytical models has not been attained. Moreover, the predicted joint strength by different models varies significantly. Further, the prediction of joint shear strength by these analytical models has also been compared with a set of 200 experimental results from the literature. It has been observed that none of the twelve models are capable of predicting joint shear strength with sufficient accuracy for the complete range of experimental results. The research community has to reconsider the effect of each parameters based on larger set of test results and new improved analytical models should be proposed.

Seismic behavior evaluation of exterior beam-column joints with headed or hooked bars using nonlinear finite element analysis

  • Rajagopal, S.;Prabavathy, S.;Kang, Thomas H.K.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.861-875
    • /
    • 2014
  • This paper studies the response of seismic behavior of reinforced concrete exterior beam-column joints under reversal loading with different anchorages and joint core details. The joint core was detailed without much confinement (group-I) and/or with proposed X-cross bars in the core (group-II). The beam longitudinal reinforcement's anchorages were designed as per ACI 352 (headed bars), ACI 318 (conventional $90^{\circ}$ bent hooks) and IS 456 ($90^{\circ}$ bent hooks with extended tails). The nonlinear finite element analysis response of the beam-column joints was studied, along with initial and progressive cracks up to failure. The experimental and analytical results were compared and presented in this paper to make more scientific conclusions.

Stiffness Evaluation of Steel Beam-to-Column Joints Using Component method (Component method를 이용한 철골 보-기둥 죠인트의 강성평가)

  • 양철민;조지은;김영문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.243-250
    • /
    • 2004
  • This paper reports on the evaluation of the initial stiffness of steel joints using component method as well as experimental tests. The so-called component method corresponds precisely to a simplified mechanical model composed of extensional springs and rigid links, whereby the joint is simulated by an appropriate choice of rigid and flexible components. An application to a cantilever beam-to-column steel joint is presented and compared to the experimental results obtained under cyclic loading condition. Comparison between numerical and experimental results allows to conclude that the numerical model is able to simulate, with a good level of accuracy for initial stiffness, the behaviour of beam-to-column joints.

  • PDF