• Title/Summary/Keyword: beam-particle model

Search Result 41, Processing Time 0.025 seconds

Verification and application of beam-particle model for simulating progressive failure in particulate composites

  • Xing, Jibo;Yu, Liangqun;Jiang, Jianjing
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.273-283
    • /
    • 1999
  • Two physical experiments are performed to verify the effectiveness of beam-particle model for simulating the progressive failure of particulate composites such as sandstone and concrete. In the numerical model, the material is schematized at the meso-level as an assembly of discrete, interacting particles which are linked through a network of brittle breaking beams. The uniaxial compressive tests of cubic and parallelepipedal specimens made of carbon steel rod assembly which are glued together by a mixture are represented. The crack patterns and load-displacement response observed in the experiments are in good agreement with the numerical results. In the application respect of beam-particle model to the particulate composites, the influence of defects, particle arrangement and boundary conditions on crack propagation is approached, and the correlation existing between the cracking evolution and the level of loads imposed on the specimen is characterized by fractal dimensions.

ELECTRON TEMPERATURE ESTIMATION OF NON-THERMAL ATMOSPHERIC-PRESSURE NEON AND OXYGEN ADMIXTURE PLASMA JET BY CONVECTIVE WAVE PACKET MODEL

  • SORNSAKDANUPHAP, Jirapong;SUANPOOT, Pradoong;Hong, Young June;Ghimire, Bhagirath;CHO, Guangsup;CHOI, EunHa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.207-207
    • /
    • 2016
  • plasma group velocities of neon with oxygen admixture (ug) are obtained by intensified charge coupled device (ICCD) camera images at fixed gate width time of 5 ns. The propagation velocities outside interelectrode region are in the order of 104 m/s.The plasma ambipolar diffusion velocities are calculated to be in the order of 102 m/s. Plasma jet is generated by all fixed sinusoidal power supply, total gas flow and repetition frequency at 3 kV, 800 sccm and 40 kHz, respectively. The amount of oxygen admixture is varied from 0 to 2.75 %. By employing one dimensional convective wave packet model, the electron temperatures in non-thermal atmospheric-pressure plasma jet are estimated to be in a range from 1.65 to 1.95 eV.

  • PDF

ELECTRON TEMPERATURE ESTIMATION OF NON-THERMAL ATMOSPHERIC-PRESSURE NEON AND ARGON PLASMA JET BY CONVECTIVE WAVE PACKET MODEL

  • SORNSAKDANUPHAP, Jirapong;SUANPOOT, Pradoong;Hong, Young June;Ghimire, Bhagirath;CHO, Guangsup;CHOI, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.156.1-156.1
    • /
    • 2015
  • Neon and argon plasma group velocities (ug) are obtained by intensified charge coupled device (ICCD) camera images at fixed gate width time of 5 ns. The propagation velocities in upstream and downstream region are in the order of 104-105 m/s. The plasma ambipolar diffusion velocities are calculated to be in the order of 101-102 m/s. Plasma jet is generated by sinusoidal power supply in varying voltages from 1 to 4 kV at repetition frequency of 40 kHz. By employing one dimensional convective wave packet model, the neon and argon electron temperatures in non-thermal atmospheric-pressure plasma jet are estimated to be 1.95 and 1.18 eV, respectively.

  • PDF

Development of Program for Relative Biological Effectiveness (RBE) Analysis of Particle Beam Therapy

  • Chung, Yoonsun;Ahn, Sang Hee;Choi, Changhoon;Park, Sohee
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • Relative biological effectiveness (RBE) of particle beam needs to be evaluated at particle beam therapy centers before the clinical application of the particle beam. However, since RBE analysis is implemented manually, it is useful to have a tool that can easily and effectively handle the data of experiments to generate cell survival curve and to analyze RBE simultaneously. In this work, the development of a program for RBE analysis of particle beam therapy was presented. This RBE analysis program was developed to include two parts; fitting the cell survival curves to linear-quadratic model and calculating the RBE values at a certain endpoint using fitting results. This program was also developed to simultaneously compare and analyze the template results that stored experiment data with photon and particle beam irradiations. The results of the cell survival curve obtained by each irradiation can be analyzed by the user on a desired data after reading the template stored in the easy-to-use excel file. The analysis results include the cell survival curves with error range, which are appeared in the screen and the ${\alpha}$ and ${\beta}$ parameters of linear-quadratic model with 95% confidence intervals, RBE values, and $R^2$ values to evaluate goodness-of-fit of survival curves to model, which are stored in a text cvs file. This software can generate cell survival curve, fit to model, and calculate RBE all at once with raw experiment data, so it helps users to save time for data handling and to reduce the possibility of making error on analysis. As a coming plan, we will create a user-friendly graphical user interface to present the results more intuitively.

Particle Simulation Modelling of a Beam Forming Structure in Negative-Ion-Based Neutral Beam Injector (중성빔 입사장치에서 빔형성 구조의 입자모사 모형)

  • Park, Byoung-Lyong;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.40-47
    • /
    • 1989
  • For the effective design of a beam forming structure of the negative-ion-based neutral beam injector, a computer program based on a particle simulation model is developed for the calculation of charged particle motions in the electrostatic fields. The motions of negative ions inside the acceleration tube of a multiple-aperture triode are computed at finite time steps. The electrostatic potentials are obtained from the Poisson's equation by the finite difference method. The successive overrelaxation method is used to solve the matrix equation. The particle and force weighting methods are used on a cloud-in-cell model. The optimum design of the beam forming structure has been studied by using this computer code for the various conditions of elctrodes. The effects of the acceleration-deceleration gap distance, the thickness of the deceleration electrode and the shape of the acceleration electrode on beam trajectories are exmined to find the minimum beam divergence. Some numerical illustrations are presented for the particle movements at finite time steps in the beam forming tubes. It is found in this particle simulation modelling that the shape of the acceleration electrode is the most significant factor of beam divergence.

  • PDF

Development of Grid Observation Model for Particle Filter-based Mobile Robot Localization using Sonar Grid Map (초음파 격자 지도를 이용한 파티클 필터 기반의 이동로봇 위치 추정을 위한 격자 관측 모델의 개발)

  • Park, Byungjae;Lee, Se-Jin;Chung, Wan Kyun;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.308-316
    • /
    • 2013
  • This paper proposes an observation model for a particle filter-based localization using a sonar grid map. The proposed model estimates a predicted observation by considering the properties of a sonar sensor which has a large angular uncertainty. The proposed model searches a grid which has the highest probability to reflect a sonar beam using the following procedures; (1) the reliable area of a single sonar data is determined using the footprint association model; (2) the detection probability of each grid cell in a sonar beam coverage in estimated. The proposed model was applied to the particle filter based localization, and was verified by experiments in indoor environments.

Failure simulation of ice beam using a fully Lagrangian particle method

  • Ren, Di;Park, Jong-Chun;Hwang, Sung-Chul;Jeong, Seong-Yeob;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.639-647
    • /
    • 2019
  • A realistic numerical simulation technology using a Lagrangian Fluid-Structure Interaction (FSI) model was combined with a fracture algorithm to predict the fluid-ice-structure interaction. The failure of ice was modeled as the tensile fracture of elastic material by applying a novel FSI model based on the Moving Particle Semi-implicit (MPS) method. To verify the developed fracture algorithm, a series of numerical simulations for 3-point bending tests with an ice beam were performed and compared with the experiments carried out in an ice room. For application of the developed FSI model, a dropping water droplet hitting a cantilever ice beam was simulated with and without the fracture algorithm. The simulation showed that the effects of fracture which can occur in the process of a FSI simulation can be studied.

Model for the Inertial Focusing of Particles Using an Atmospheric Aerodynamic Lens (상압 공기역학적 렌즈의 입자 관성집속 모델)

  • Lee, Jin-Won;Lee, Min-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.315-321
    • /
    • 2001
  • Aerodynamic lenses are widely used in generating particle beams of high density and small diameter, but analytical or modeling studies are limited only in the free molecular regime. In this study, it is shown that generating particle beam is also possible in atmospheric pressure range, and the mechanism of generating particle beam using an orifice is analysed into three different parts : fluid dynamic contraction, diffusional defocusing, and inertial focusing. In laminar flow conditions, the diffusional defocusing effect can be neglected, and the effects of inertial focusing can be expressed in terms of the orifice size and Stokes number. Numerical experiments are done for two different orifices, d/D=1/5 and 1/10 and particle diameter d(sub)p=1-10 ㎛. The results for two different orifices can be made into a single curve when a modified Stokes number is used. The inertial focusing effect diminishes when the modified Stokes number becomes smaller than 10(sup)-2.

Measurement of Plasma Parameters (Te and Ne) and Reactive Oxygen Species in Nonthermal Bioplasma Operating at Atmospheric Pressure

  • Choi, Eun Ha;Kim, Yong Hee;Kwon, Gi Chung;Choi, Jin Joo;Cho, Guang Sup;Uhm, Han Sup;Kim, Doyoung;Han, Yong Gyu;Suanpoot, Pradoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.141-141
    • /
    • 2013
  • We have generated the needle-typed nonthermal plasma jet by using an Ar gas flow at atmospheric pressure. Diagnostics of electron temperature anddensity is critical factors in optimization of the atmospheric plasma jet source in accordance with the gas flow rate. We have investigated the electron temperature and density of plasma jet by selecting the four metastable Ar emission lines based on the atmospheric collisional radiative model and radial profile characteristics of current density, respectively. The averaged electron temperature and electron density for this plasma jet are found to be ~1.6 eV and ~$3.2{\times}10^{12}cm^{-3}$, respectively, in this experiment. The densities of OH radical species inside the various bio-solutions are found to be higher by about 4~9 times than those on the surface when the argon bioplasma jet has been bombarded onto the bio-solution surface. The densities of the OH radicalspecies inside the DI water, DMEM, and PBS are measured to be about $4.3{\times}10^{16}cm^{-3}$, $2.2{\times}10^{16}cm^{-3}$, and $2.1{\times}10^{16}cm^{-3}$, respectively, at 2 mm downstream from the surface under optimized Ar gas flow 250 sccm.

  • PDF

An Analysis on Treatment Schedule of Carbon Ion Therapy to Early Stage Lung Cancer

  • Sakata, Suoh;Miyamoto, Tadaaki;Tujii, Hirohiko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.174-176
    • /
    • 2002
  • A total of 134 patients with stage 1 of non-small cell lung cancer treated by carbon ion beam of HIMAC NIRS were investigated for control rate and delivered dose. The delivered dose of every patient was converted to biological effective dose (BED) of LQ model using fraction number, dose per fraction and alpha beta ratio which shows the maximum correlation between BED and tumor control. The BED of every patient was classified to establish a BED response curve for control. Assuming fraction numbers, dose response curves were introduced from BED response curve. The total doses to realize several control rates were obtained for the treatment of small fraction number.

  • PDF