• Title/Summary/Keyword: beam-column connections

Search Result 490, Processing Time 0.024 seconds

Bolted end plate connections for steel reinforced concrete composite structures

  • Li, Xian;Wu, Yuntian;Mao, Weifeng;Xiao, Yan;Anderson, J.C.;Guo, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.291-306
    • /
    • 2006
  • In order to improve the constructability and meanwhile ensure excellent seismic behavior, several innovative composite connection details were conceived and studied by the authors. This paper reports experimental results and observations on seismic behavior of steel beam bolted to reinforced concrete column connections (bolted RCS or BRCS). The proposed composite connection details involve post tensioning the end plates of the steel beams to the reinforced concrete or precast concrete columns using high-strength steel rods. A rational design procedure was proposed to assure a ductile behavior of the composite structure. Strut-and-tie model analysis indicates that a bolted composite connection has a favorable stress transfer mechanism. The excellent capacity and behavior were then validated through five full-scale beam to column connection model tests.

Performance of Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 프리캐스트 콘크리트 보-기둥 접합부의 거동 연구)

  • Kim, Kyu-Rhee;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.619-622
    • /
    • 2004
  • In this study, a moment resisting precast concrete beam-column connection is proposed. An experimental study was carried out to investigate the connection behavior subjected to cyclic loading. Three precast beam-column interior connections and one monolithic connection were tested. Variable included the detailing used at the joint to achieve structural constructability and the location of mild steel reinforcement and high strength bar. During specimen fabrication, the joint details enables ease and speed of construction. Connection performance is evaluated on the basis of ductility, energy dissipation capacity, connection strength, and drift capacity. Based on test results, the precast concrete beam-column connection is capable of matching or exceeding the performance of the monolithic connection.

  • PDF

An experimental study of connections between I-beams and concrete filled steel tubular columns

  • De Nardin, Silvana;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.303-315
    • /
    • 2004
  • Frame composed of concrete-filled steel tubular columns and I-shaped steel beam has been researched in order to development reasonable connection details. The present paper describes the results of an experimental program in four different connection details. The connection details considered include through-bolt between I-shaped steel beams and concrete-filled steel tubular columns and two details of welded connections. One of the welded connection details is stiffened by angles welded in the interior of the profile wall at the beam flange level. The specimens were tested in a cruciform loading arrangement with variable monotonic loading on the beams and constant compressive load on the column. For through-bolt details, the contribution of friction and bearing were investigated by embedding some of the bolts in the concrete. The results of the tests show that through-bolt connection details are very ductility and the bearing is not important to the behavior of these moment connections. The angles welded in the interior of the profile wall increase the strength and stiffness of the welded connection detail. In addition, the behavior curves of these connections are compared and some interesting conclusions are drawn. The results are summarized for the strength and stiffness of each connection.

Seismic Performance of Precast Concrete Beam-Column Connections Using Ductile Rod (연성 강봉을 사용한 프리캐스트 콘크리트 보-기둥 접합부의 내진성능)

  • Lee, Sang-Jin;Hong, Sung-Gul;Lim, Woo-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.695-705
    • /
    • 2014
  • Precast concrete (PC) beam-column connections using ductile rods are proposed for earthquake zone. An existing beam-column connection, two PC specimens designed by considering failure modes and a conventional RC specimen were tested under cyclic loading to evaluate the seismic performance. The specimens were designed to satisfy the requirements of current design code. The variables are the yield strength of longitudinal reinforcing bars of PC beams. The test results showed that the proposed system applying smaller yield strength of the longitudinal reinforcing bars at the PC beams than the ductile rods was satisfied with seismic criteria. The deformation capacity and energy dissipation capacity of the proposed PC beam-column connections were greater than those of the existing DDC system.

Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method

  • Girao Coelho, Ana M.;Simoes da Silva, Luis;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.33-53
    • /
    • 2006
  • The rotational behaviour of bolted extended end plate beam-to-column connections is evaluated in the context of the component method. The full moment-rotation response is characterized from the force-deformation curve of the individual joint components. The deformability of end plate connections is mostly governed by the bending of the column flange and/or end plate and tension elongation of the bolts. These components form the tension zone of the joint that can be modelled by means of "equivalent T-stubs". A systematic analytical procedure for characterization of the monotonic force-deformation behaviour of individual T-stub connections is proposed. In the framework of the component method, the T-stub is then inserted in the joint spring model to generate the moment-rotation response of the joint. The procedures are validated with the results from an experimental investigation of eight statically loaded extended end plate bolted moment connections carried out at the Delft University of Technology. Because ductility is such an important property in terms of joint performance, particularly in the partial strength joint scenario, special attention is given to this issue.

Suggestion on Strength Formula of Square Hollow Section Tubluar Column-to-BeamPinned Connections (각형강관 기둥-보 핀접합부의 내력식 제안)

  • Choi, Sung Mo;Lee, Seong Hui;Lee, Kwang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.525-534
    • /
    • 2006
  • Column-to-beam pinned connections can cause local moment to the web of a steel tube due to the distance of eccentricity between the row of bolts and the column flange, which possibility deteriorates the load capacity of column. In this study, a square hollow section tubular used finite element analysis of a square hollow section tubular column was carried out, and the column width and thickness, existence and non-existence of internal reinforcement, and existence and non-existence of compressive force were taken as variables to examine the load capacity deterioration of a square column caused by moment. To guarantee the reliability of the finite element results, some specimens were fabricated and tested. The yield line method was applied to suggest the strength formulas of the square tubular column to the beam pinned connections. Based on the study results, the column strength the moment of the square hollow section tubular column to the beam pined connections improved with the increase in the w to strength limitations, a no-reinforcement type of square hollow section tubular column was proposed, and if the limitation values were not satisfied, the reinforcement of the internal column was made mandatory. Therefore, the horizontal -reinforcement type considered the strength increase, and the fabrication of the square hollow section tubular column was ar column that considered its load capacity with the moment for the no-reinforcement and the horizontal-reinforcement types.

Cyclic Loading Test for Beam-to-Column Connections of Concrete Encased CFT Column (콘크리트피복충전 각형강관 기둥-보 접합부의 주기하중 실험)

  • Park, Hong Gun;Lee, Ho Jun;Park, Sung Soon;Kim, Sung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.55-68
    • /
    • 2014
  • In this study, the beam-to column connections of concrete-encased-and-filled steel tube columns were tested under cyclic loading. Two specimens using steel beams and two specimens using precast concrete beams were tested. The dimension of the column cross section was $670mm{\pm}670mm$. The beam depths were 488mm and 588mm for the steel beams and 700mm for the precast concrete beams. The longitudinal bar ratios of the precast concrete beams were 1.1% and 1.5%. For the connections to the steel beams, continuity plates were used in the tube columns. For the connections to the PC beams, couplers were used for beam re-bar connections. The test results showed that except for a specimen, deformation capacities of the specimens were greater than 4% rotation angle, which is the requirement for the Special Moment Frame. Particularly, specimens using precast concrete beam showed excellent performances in the strength, deformation, and energy dissipation.

Evaluating the accuracy of a new nonlinear reinforced concrete beam-column element comprising joint flexibility

  • Izadpanah, Mehdi;Habibi, AliReza
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.525-535
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Experimental evaluation of steel connections with horizontal slit dampers

  • Lor, Hossein Akbari;Izadinia, Mohsen;Memarzadeh, Parham
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.79-90
    • /
    • 2019
  • This study introduces new connections that connect the beam to the column with slit dampers. Plastic deformations and damages concentrate on slit dampers. The slit dampers prevent plastic damages of column, beam, welds and panel zone and act as fuses. The slit dampers were prepared with IPE profiles that had some holes in the webs. In this paper, two experimental specimens were made. In first specimen (SDC1), just one slit damper connected the beam to the column and one IPE profile with no holes connected the bottom flange of the beam to the column. The second specimen (SDC2) had two similar dampers which connected the top and bottom flange of the beam to the column. Cyclic loading was applied on Specimens. The cyclic displacements conditions continued until 0.06 radian rotation of connection. The experimental observations showed that the bending moment of specimen SDC2 increased until 0.04 story drift. In specimen SDC1, the bending moment decreases after 0.03 story drift. Test results indicate the high performance of the proposed connection. Based on the results, the specimen with two slit damper (SDC2) has higher seismic performance and dissipates more energy in loading process than specimen SDC1. Theoretical formulas were extended for the proposed connections. Numerical studies have been done by ABAQUS software. The theoretical and numerical results had good agreements with the experimental data. Based on the experimental and numerical investigations, the high ductility of connection is obtained from plastic damages of slit dampers. The most flexural moment of specimen SDC1 occurred at 3% story drift and this value was 1.4 times the plastic moment of the beam section. This parameter for SDC2 was 1.73 times the plastic moment of the beam section and occurred at 4% story drift. The dissipated energy ratio of SDC2 to SDC1 is equal to 1.51.

Experimental Evaluation of New Seismic Connections between Rectangular Steel Tube Column and H-shaped Beam (각형강관 기둥-H형강 보 신형상 내진접합부의 실험적 평가)

  • Jin, Jooho;Kim, DooHwan;Kim, Hyunsook;Shin, Jinwon;Park, Kooyun;Lee, Kyungkoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • A through diaphragm is often used to ensure their stiffness for moment-resisting connections using rectangular steel-tube column and H-shaped beam. The through-diaphragm connections, however, have some difficulties for their applicabilities to the field due to the complexity of the fabrication and construction processes. This study thus proposes a new modular system of steel structures assembled only using bolts without welding, by bringing a connection module composed of rectangular steel-tube column, H-shaped beam and oneway bolt onto the site. An experimental study to evaluate the seismic performance of the proposed connection details based on the new modular system is then conducted. The length and type of the inner reinforcement plate are considered as the primary design parameters, and the strength, stiffness, ductility and energy dissipation capability of the new connections are experimentally analyzed by comparison to those of conventional through diaphragm connections.