• Title/Summary/Keyword: beam width

Search Result 1,150, Processing Time 0.03 seconds

Effective Beam Width Coefficients for Lateral Stiffness in Flat-Plate Structures

  • Park, Jung-Wook;Kim, Chul-Soo;Song, Jin-Gyu;Lee, Soo-Gon
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.49-57
    • /
    • 2001
  • Flat-plate buildings are commonly modeled as two-dimensional frames to calculate unbalanced moments, lateral drift and shear at slab-column connections. The slab-column frames under lateral loads are analyzed using effective beam width models, which is convenient for computer analysis. In this case, the accuracy of this approach depends on the exact values of effective beam width to account for the actual behavior of slab-column connections. In this parametric study, effective beam width coefficients for wide range of the variations are calculated on the several types of slab-column connections, and the results are compared with those of other researches. Also the formulas for effective beam width coefficients are proposed and verified by finite element analysis. The proposed formulas are founded to be more suitable than others for analyzing flat-plate buildings subjected to lateral loading.

  • PDF

Effects of Welding Perameters on Bead Width and Penetration in Electron Beam Welding (용입과 비이드 폭 에 미치는 전자 비임 용접 변수의 영향)

  • 김숙환;강춘식;윤종원;황선효
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.25-29
    • /
    • 1984
  • In order to investigate the predominant factors which determine penetration depth and bead width in electron beam welding, bead-on-plate welding was carried out using 7075-T6 Al alloy. The results obtained from the present experiments can be summarized as follows; 1) With increasing accelerating voltage, bead width (B.W) decreases but penetration increases remarkably. 2) Increasing beam current results in increase of bead width and penetration respectively, and decrease of the ratio of penetration increment to beam current increment. 3) With increasing welding speed penetration decreases remarkably, while bead width creases.

  • PDF

Experimental Study on the Effective Joint Width of the SRC Column-Steel Beam Joint (철골철근콘크리트 기둥-철골 보 접합부의 유효폭에 관한 실험적 연구)

  • 연선아;김승훈;서수연;이리형;홍원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.405-410
    • /
    • 2001
  • To investigate factors influencing the effective width of. SRC column-steel beam joint resisting the moment as strut, six specimens are designed and tested. Parameters in the test are column width, beam height and horizontal tie within beam depth. From the test, using either wide column width or ties, strength and stiffness of joint were developed. The lower beam height the specimens showed the lower moment.

  • PDF

Hysteretic Behavior of Wide Beam With Variable Depth (깊이 변화에 따른 Wide Beam의 이력거동에 관한 연구)

  • 서수연;윤용대;이우진;윤승조
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.165-168
    • /
    • 2003
  • The objective of this paper is to investigate the effective width of wide beam. Three specimens were designed to have different depths of wide beam and to simulate exterior beam-column joint including spandrel beam. Load reversals were applied to the end of wide beam to model behaviors under seismic situation. From the test, it was shown that the strength and effective width of specimens were improved when the depth of specimens increased. The effective width of wide beam depended on the depth of it. Formulas in ACI 318-02 underestimated the effective width of wide beam even though these reflected the contribution of the depth of beam.

  • PDF

Particle Beam Focusing Using Radiation Pressure (광압을 이용한 입자빔 집속)

  • Kim, Sang-Bok;Park, Hyung-Ho;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1505-1509
    • /
    • 2004
  • A novel technique for fine particle beam focusing under the atmospheric pressure is introduced using a radiation pressure assisted aerodynamic lens. To introduce the radiation pressure in the aerodynamic focusing system, a 25 mm plano-convex lens having 2.5 mm hole at its center is used as an orifice. The particle beam width is measured for various laser power, particle size, and flow velocity. In addition, the effect of the laser characteristics on the beam focusing is evaluated comparing an Ar-Ion continuous wave laser and a pulsed Nd-YAG laser. For the pure aerodynamic focusing system, the particle beam width was decreased as increasing particle size and Reynolds number. For the particle diameter of 0.5 ${\mu}m$, the particle beam was broken due to the secondary flow at Reynolds number of 694. Using the Ar-Ion CW laser, the particle beam width becomes smaller than that of the pure aerodynamic focusing system about 16 %, 11.4 % and 9.6 % for PSL particle size of 2.5 ${\mu}m$, 1.0 ${\mu}m$, and 0.5 ${\mu}m$ respectively at the Reynolds number of 320. Particle beam width was minimized around the laser power of 0.2 W. However, as increasing the laser power higher than 0.4 W, the particle beam width was increased a little and it approached almost a constant value which is still smaller than that of the pure aerodynamic focusing system. The radiation pressure effect on the particle beam width is intensified as Reynolds number decreases or particle size increases relatively. On the other hand, using 30 Hz pulsed Nd-YAG laser, the effect of the radiation pressure on the particle beam width was not distinct unlike Ar-Ion CW laser.

  • PDF

Particle Beam Focusing Using Radiation Pressure (광압을 이용한 입자빔 집속)

  • Kim, Sang-Bok;Park, Hyung-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.110-115
    • /
    • 2005
  • A novel technique for fine particle beam focusing under the atmospheric pressure is introduced using a radiation pressure assisted aerodynamic lens. To introduce the radiation pressure in the aerodynamic focusing system, a 25m plano-convex lens having 2.5mm hole at its center is used as an orifice. The particle beam width is measured for various laser power, particle size, and flow velocity. In addition, the effect of the laser characteristics on the beam focusing is evaluated comparing an optical tweezers type and pure gradient force type. For the pure aerodynamic focusing system, the particle beam width was decreased as increasing particle size and Reynolds number. Using the optical tweezers type, the particle beam width becomes smaller than that of the pure aerodynamic focusing system about $16\%,\;11.4\%\;and\;9.6\%$ for PSL particle size of $2.5{\mu}m,\;1.0{\mu}m,\;and\;0.5{\mu}m$, respectively. Particle beam width was minimized around the laser power of 0.2W. However, as increasing the laser power higher than 0.4W, the particle beam width was increased a little and it approached almost a constant value which is still smaller than that of the pure aerodynamic focusing system. For pure gradient force type, the reduction of the particle beam width was smaller than optical tweezers type but proportional to laser power. The radiation pressure effect on the particle beam width is intensified as Reynolds number decreases or particle size increases relatively.

Shear Strength Equation of Concrete Wide Beam Shear Reinforced With Steel Plate Considering Transverse Spacing and Support Width (전단 보강 간격과 지지부 조건을 고려한 유공형 강판으로 전단 보강된 콘크리트 넓은 보의 전단 강도 산정식)

  • Kim, Min Sook;Jeong, Eun Ho;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • This paper discusses the influence of transverse reinforcement spacing and support width of concrete wide beam on shear performance. In order to evaluate the shear performance, a total of thirteen specimens were constructed and tested. The transverse reinforcement spacing, the number of legs and support width were considered as variables. From the test results, the shear strength equation of concrete wide beam is proposed for prediction of shear strength of concrete wide beam to consider the transverse reinforcement spacing and support width. It is shown that the proposed equation is able to predict shear strength reasonably well for concrete wide beam.

A method for effective beam widths of slabs in flat plate structures under gravity and lateral loads

  • Choi, Jung-Wook;Song, Jin-Gyu
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.451-468
    • /
    • 2005
  • Effective beam width models are commonly used to obtain the lateral stiffness of flat plate structures. In these models, an effective beam width is defined as the width when the flexural stiffness of the beam element equals the slab stiffness. In this present study, a method to obtain effective beam widths that considers the effects of connection geometry and slab cracking is analytically proposed. The rectangularity of the vertical member for the connection geometry and the combined effects of creep and shrinkage for the slab cracking are considered. The results from the proposed method are compared with experimental results from a test structure having nine slab-column connections.

Portable Infrared Laser Transmitter Based on a Beam Shaper Enabling a Highly Uniform Detectable Beam Width

  • Yue, Wenjing;Kim, Haeng-Jung;Lee, Sang-Shin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.486-490
    • /
    • 2013
  • A portable infrared laser transmitter delivering a highly uniform detectable beam was demonstrated. It incorporates a flexible beam shaper, comprising a perforated diffuser sheet in conjunction with a pinhole. The beam shaper plays the prominent role of flexibly tailoring the incoming light via both scattering and diffraction, in order to equalize the effective beam width over a long distance. The intensity profile of a generated beam was practically observed, demonstrating that a substantially uniform beam of 70-cm width was achieved for a given threshold detection level, with an average deviation of 6% over a range of 600 m.

Cure Properties in Photopolymer for Stereolithography according to Variance of Laser Beam Size (레이저빔 크기변화에 따른 광조형수지의 경화특성)

  • 이은덕;심재형;백인환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.76-84
    • /
    • 2003
  • Stereolithography is the technique using a laser beam to cure a liquid resin, a photopolymer, with three dimensional computer-aided design (CAD) data. The build parameters of stereolithography such as beam size, scan velocity. hatch spacing, layer thickness and etc. are determined by the accuracy of prototype, the build time and the cured properties of the resin. In particular, beam size is important processing parameter fur the other parameters. Therefore, this study observed the cured property to beam size. For this purpose, according to hatch spacing and beam size, the cure width and depth were measured on single cured line. Also, the cure width and depth were measured at single cured layer As a result of experiments. cure depth which varied from 0.23mm to 0.34mm was directly proportioned to beam radius. on the other hand, cure width which varied from 0.42mm to 1.07mm was inversely proportioned to beam radius. Surface roughness varied from 1.12 to 2.23 m for the ratio of hatch spacing to beam radius.