• 제목/요약/키워드: beam tracking

검색결과 182건 처리시간 0.02초

Estimation of Allowable Path-deviation Time in Free-space Optical Communication Links Using Various Aircraft Trajectories

  • Kim, Chul Han
    • Current Optics and Photonics
    • /
    • 제3권3호
    • /
    • pp.210-214
    • /
    • 2019
  • The allowable path-deviation time of aircraft in a free-space optical communication system has been estimated from various trajectories, using different values of aircraft speeds and turn rates. We assumed the existence of a link between the aircraft and a ground base station. First, the transmitter beam's divergence angle was calculated through two different approaches, one based on a simple optical-link equation, and the other based on an attenuation coefficient. From the calculations, the discrepancy between the two approaches was negligible when the link distance was approximately 110 km, and was under 5% when the link distance ranged from 80 to 140 km. Subsequently, the allowable path-deviation time of the aircraft within the tracking-error tolerance of the system was estimated, using different aircraft speeds, turn rates, and link distances. The results indicated that the allowable path-deviation time was primarily determined by the aircraft's speed and turn rate. For example, the allowable path-deviation time was estimated to be ~3.5 s for an aircraft speed of 166.68 km/h, a turn rate of $90^{\circ}/min$, and a link distance of 100 km. Furthermore, for a constant aircraft speed and turn rate, the path-deviation time was observed to be almost unchanged when the link distance ranged from 80 to 140 km.

Development of a Real-Time Internal and External Marker Based Gating System for Proton Therapy

  • Cho, Junsang;Cheon, Wonjoong;Ahn, Sanghee;Lee, Moonhee;Park, Hee Chul;Han, Youngyih
    • 한국의학물리학회지:의학물리
    • /
    • 제28권3호
    • /
    • pp.92-99
    • /
    • 2017
  • In respiratory-induced proton therapy, the accuracy of tracking system and beam controlling is more important than photon therapy. Therefore, a high accuracy motion tracking system that can track internal marker and external surrogate is needed. In this research, our team has installed internal and external marker tracking system at our institution's proton therapy system, and tested the scanning with gating according to the position of marker. The results demonstrate that the developed in-house external/internal marker based gating system can be clinically used for proton therapy system for moving tumor treatment.

고속 광 디스크 드라이브를 위한 디스크의 편심 보상 방법 (A Method for Reducing the Effect of Disk Radial Runout for a High-Speed Optical Disk Drive)

  • 유정래;문정호
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.101-105
    • /
    • 2006
  • Disk radial runout creates a periodic relative motion between the laser beam spot and tracks formed on an optical disk. While only focus control is activated, the periodic relative motion yields sinusoid-like waves in the tracking error signal, where one cycle of the sinusoid-like waves corresponds to one track. The frequency of the sinusoid-like waves varies depending on the disk rotational speed and the amount of the disk radial runout. If the frequency of the tracking error signal in the off-track state is too high due to large radial runout of the disk, it is not a simple matter to begin track-following control stably. It might take a long time to reach a steady state or tracking control might fail to reach a stable steady state in the worst case. This article proposes a simple method for reducing the relative motion caused by the disk radial runout in the off-track state. The relative motion in the off-track state is effectively reduced by a drive input obtained through measurements of the tracking error signal and simple calculations based on the measurements, which helps reduce the transient response time of the track-following control. The validity of the proposed method is verified through an experiment using an optical disk drive.

위상배열 레이다를 위한 3차원 적응 표본화 빈도 추적 알고리듬의 설계 (Design of a 3-D Adaptive Sampling Rate Tracking Algorithm for a Phased Array Radar)

  • 손건;홍순목
    • 전자공학회논문지B
    • /
    • 제30B권5호
    • /
    • pp.62-72
    • /
    • 1993
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three dimensional adaptive target tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track updata illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver level detector. A detailed simulation is conducted to test the validity of our tracking algorithm for target trajectories under various conditions of maneuver.

  • PDF

패치형 광섬유 센서를 이용한 구조물의 동특성 감지 및 퍼지 진동 제어 (On-line Phase Tracking of Patch Type EFPI Sensor and Fuzzy Logic Vibration Control)

  • 장영환;김도형;이인;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.726-733
    • /
    • 2004
  • On-line phase tracking of an extrinsic Fabry-Perot interferometer (EFPI) and experimental vibration control of a composite beam with a sensing-patch are investigated. We propose a sensing-patch for the compensation of the interferometric non-linearity. In this paper. a sensing-patch that comprises an EFPI and a piezo ceramic(PZT) is fabricated and the characteristics of the sensing-patch are experimentally investigated. A simple and practical logic is applied for the real-time tracking of optical phase of an interferometer Experimental results show that the proposed sensing-patch does not have the non-linear behavior of conventional EFPI and hysteresis of piezoelectric material. Moreover, it has good strain resolution and wide dynamic sensing range. Finally, the vibration control with the developed sensing-patch has been performed using Fuzzy logic controller, and the possibility of sensing-patch as a sensoriactuator is considered.

부반사판 회전에 의한 함정용 위성 안테나의 위성 추적 방법 (A Satellite Tracking Method Using Rotation of Sub-Reflector for Naval Vessels Satellite Antenna System)

  • 엄광식;박명관
    • 전자공학회논문지SC
    • /
    • 제44권3호
    • /
    • pp.39-44
    • /
    • 2007
  • 본 논문에서는 해양 함정 환경에서 위성 신호를 수신하기 위한 위성 탐색 및 추적 방법을 제안한다. 빠른 시간 내에 위성을 탐색하기 위한 탐색 알고리즘은 위성 신호의 주엽 뿐아니라 부엽을 이용하는 방법을 제안하였으며, 안테나가 지향하고자 하는 목표 위성을 파도 등에 의한 외란에 상관없이 항상 추적하기 위한 방법으로 부반사판을 틸팅하여 고속으로 회전하여 위성 편차를 취득하는 방법을 제안하였다. 이 방법은 주반사판과 부반사판으로 구성된 카세그레인 안테나를 기반으로 코니칼 스케닝을 구현하여 고가의 자이로 센서 등의 모션센서 없이 오차 신호를 취득하여 추적 기능을 구현하였으며, 실험을 통해 그 효용성을 보였다.

컨포멀 소나에서의 표적고각 추적 및 융합을 이용한 표적기동분석 성능향상 연구 (A Study on Performance Improvement of Target Motion Analysis using Target Elevation Tracking and Fusion in Conformal Array Sonar)

  • 이해호;박규태;신기철;조성일
    • 한국군사과학기술학회지
    • /
    • 제22권3호
    • /
    • pp.320-331
    • /
    • 2019
  • In this paper, we propose a method of TMA(Target Motion Analysis) performance improvement using target elevation tracking and fusion in conformal array sonar. One of the most important characteristics of conformal array sonar is to detect a target elevation by a vertical beam. It is possible to get a target range to maximize advantages of the proposed TMA technology using this characteristic. And the proposed techniques include target tracking, target fusion, calculation of target range by multipath as well as TMA. A simulation study demonstrates the outstanding performance of proposed techniques.

Estimation of structure system input force using the inverse fuzzy estimator

  • Lee, Ming-Hui
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.351-365
    • /
    • 2011
  • This study proposes an inverse estimation method for the input forces of a fixed beam structural system. The estimator includes the fuzzy Kalman Filter (FKF) technology and the fuzzy weighted recursive least square method (FWRLSM). In the estimation method, the effective estimator are accelerated and weighted by the fuzzy accelerating and weighting factors proposed based on the fuzzy logic inference system. By directly synthesizing the robust filter technology with the estimator, this study presents an efficient robust forgetting zone, which is capable of providing a reasonable trade-off between the tracking capability and the flexibility against noises. The period input of the fixed beam structure system can be effectively estimated by using this method to promote the reliability of the dynamic performance analysis. The simulation results are compared by alternating between the constant and adaptive and fuzzy weighting factors. The results demonstrate that the application of the presented method to the fixed beam structure system is successful.

다중빔 방식의 FMCW 레이더 표적신호 시뮬레이터 개발 (Development of Target Signal Simulator for Multi-Beam Type FMCW Radar)

  • 이승연;최덕선;정영헌;이석재;윤주홍
    • 한국군사과학기술학회지
    • /
    • 제15권3호
    • /
    • pp.343-349
    • /
    • 2012
  • To detect targets for autonomous navigation of unmanned ground vehicle, mounted sensors are required to work all-weather condition. In this point of view, the FMCW radar is quietly appropriate. In this paper, we present development results of target signal simulator for multi-beam type FMCW radar. A target signal simulator make pseudo target signals which simulates multiple moving targets. And we describe how to make hit information for each target in multi-beam type radar. The developed methods are utilized for target tracking device. Moreover it can be applied to similar target signal simulator.

Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control

  • Kim, Byeongil;Washington, Gregory N.;Yoon, Hwan-Sik
    • Smart Structures and Systems
    • /
    • 제11권6호
    • /
    • pp.623-635
    • /
    • 2013
  • This paper investigates application of a control algorithm called model predictive sliding mode control (MPSMC) to active vibration suppression of a cantilevered aluminum beam. MPSMC is a relatively new control algorithm where model predictive control is employed to enhance sliding mode control by enforcing the system to reach the sliding surface in an optimal manner. In previous studies, it was shown that MPSMC can be applied to reduce hysteretic effects of piezoelectric actuators in dynamic displacement tracking applications. In the current study, a cantilevered beam with unknown mass distribution is selected as an experimental test bed in order to verify the robustness of MPSMC in active vibration control applications. Experimental results show that MPSMC can reduce vibration of an aluminum cantilevered beam at least by 29% regardless of modified mass distribution.