• Title/Summary/Keyword: beam shear

Search Result 2,136, Processing Time 0.028 seconds

Structural performance by strengthening types of wood frames using H shaped steel joints (H형강 접합부를 갖는 목조 골조의 보강형식에 따른 구조성능)

  • Kim, Soon-Chul;Moon, Youn-Joon;Yang, Il-Seung;Park, Geun-Hong
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.77-83
    • /
    • 2008
  • The effective mixture of structural laminated timber and other materials is expected to extend the potentials of building structures because of the potentials to realize high performance in structural safety. The classical joint types using drift pin and bolts are occurred local failures due to the small bearing area. In result, new joints using H shaped steel were suggested in this research. The objective of this study is to evaluate elasto-plastic behaviors by strengthening types of wood frames with new joints connecting structural laminated timber with H shaped steel. A total of five specimens of about one-second scale were tested. Specimens had columns with 1,050 height and $84mm{\times}100mm$ section, and a beams with 1,950mm length and $130mm{\times}100mm$ section. Also, the specimens were stiffened by brace, hwang-toh brick, and autoclaved lightweight concrete. The results of the test showed that the specimen stiffened with autoclaved lightweight concrete was characterized by fairly good strength and stiffness than those of the other specimens. Initial stiffness of H-2.0D-NS specimen with 2 times inserting length of beam height showed 1.33 times than that of H-1.5D-NS specimen. However, the strength of H-2.0D-NS specimen has not improved too much than H-1.5D-NS specimen.

Laboratory Performance Evaluation of Recycled Asphalt Binders with Differing Rejuvenators (재생 첨가제를 활용한 재활용 아스팔트 바인더의 실내 공용성 평가)

  • Kim, Yeong Min;Im, Jeong Hyuk;Hwang, Sung Do;Jeong, Kyu Dong;Rhee, Suk Keun
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.55-63
    • /
    • 2015
  • PURPOSES : The objective of this study is to investigate the properties of recycled asphalt binders with five different rejuvenators, in order to evaluate the applicability of the recycled asphalt binders compared with the original asphalt binder. METHODS : In order to simulate recycled asphalt binders, fresh asphalt binders are aged by various Superpave aging procedures, such as the rolling thin-film oven (RTFO) and the pressure aging vessel (PAV). Then, selected rejuvenators are added to the aged asphalt binders in the amount of 5%, 10%, and 15%. The asphalt binder properties are evaluated by the dynamic shear rheometer (DSR), the rotational viscometer (RV), and the bending beam rheometer (BBR). In this study, AP-5 (penetration grade 60-80, PG 64-16) asphalt binder is used. A total of five types of rejuvenators are employed. RESULTS AND CONCLUSIONS : When considering aged asphalt without a new asphalt binder, it seems that the percentage of rejuvenator used in Korea is a bit too low, and that it fails to possess the characteristics of the original binder. From the current practice of evaluating the properties of recycled binder based on penetration ratio only, the amount of rejuvenator required is similar for the long-term-aged binder, but is excessive for the longest-term aged binder, causing deterioration of workability and stiffness of the recycled binder.

An Analytical Study on Semi-Rigid Connections of 20-Story Braced Steel Structures (20층 가새 철골구조물의 반강접 접합부에 관한 해석적 연구)

  • Kang, Suk-Bong;Kim, Jin-Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.1-8
    • /
    • 2000
  • In this study, the effect of semi-rigid connections on the structural behavior of 20-story braced steel structure has been investigated utilizing the second-order elastic structural analysis program in which nonlinear behavior of beam-column connections and geometric nonlinearity have been considered. Global effects such as P-delta effect and sway at the top have been studied, as well as distribution of member force and combined stress in structural members as local effects. When the structure subjected to horizontal load and vertical load is equipped with lateral-load resisting system such as braces, replacement of shear connection with semi-rigid connection has not caused any problem in P-delta effect and top lateral displacement. Distribution of member forces resulted in reduction in member size for economic structural design.

  • PDF

An Analytical Study on the Nonlinear Behavior of Double Angle Connections Subjected to Shear (전단력을 받는 더블 앵글 접합부의 비선형 거동에 관한 해석적 연구)

  • Lee, Soo-Kueon;Hong, Kap-Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.65-73
    • /
    • 2000
  • The behavior of double angle connections is analyzed by 3D finite element method using ABAQUS(ver 5.8). Moment-rotation curves for the connections are generated, as well as stress distribution for angle and bolt. Double angle connections have various angle thickness, gage distance and number of bolt. Parameters, such as initial stiffness, plastic tiffness, reference load and curve shape parameter were obtained by regression method using Richard's formula. These parameter lead to predict nonlinear behavior of double angle connection. Design curves giving the parameters of the moment-rotation curves are generated. These parameters are primarily a function of the angle thickness, gage distance and the number of bolts in the connection. Using these parameters, connection moment and its ratio to the full plastic moment capacity Mp of the beam are calculated.

  • PDF

Bending and Bonding Strength Performances of Larix Block-glued Glulam (낙엽송 블록접착집성재의 접착 및 휨 강도 성능)

  • Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.315-322
    • /
    • 2016
  • Block-glued glulam is a structural material that can be used as a construction member of a large-section wooden building, which is produced by edgewise bonding of two or more glulam beam elements. The edgewise bonding performance of the block-glued glulam was examined through delamination test and block shear strength test. According to the test results, the block-glued glulam that was manufactured with 1.5 MPa of compressive pressure after applying $500g/m^2$ of Resorcinol adhesive showed the best edgewise bonding performance. The block-glued glulam produced in a good edgewise bonding condition was compared with a control glulam with the same section modulus for bending strength performance. The modulus of elasticity (MOE) in bending was similar to that of the control glulam. The modulus of rupture (MOR) of the block-glued glulam was higher by 27% than that of the control glulam. No interfacial failure or cohesive failure were observed in the edgewise bonding layer.

A Study on the Similitude of member Behavior for Small-Scale Modeling of Reinforced Concrete Structure (철근콘크리트 축소모델의 부재거동 상사성에 관한 연구)

  • 이한선;장진혁
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.177-185
    • /
    • 1996
  • Four types of experiments were performed to check the similitude of member behavior between prototype and 1 /10 scale models : (1) Test of slender columns with P-$\Delta$ effect, (2) Test of short columns with and without confinement steel, (3) Test of simple beams without stirrups, and (4) 'T-beam test. Based on the results of experiments, the conclusions were made as follows : (1) The P-$\Delta$ effect of slender columns can be almost exactly represented by 1/10 scale model. (2) The effect of confinement on short columns by the hoop steel can be also roughly simulated by 1/10 scale model. (3) The failure modes of simple beams without stirrups are brittle shear failures in prototype whereas those of 1/10 scale models are the ductile yielding of tension steel followed by large diagonal tension cracking and compressive concrete failure. (4) The behaviors of prototype and 1/10 scale model in T-beams appear very similar.

Enhancing the Performance of High-Strength Concrete Corbels Using Hybrid Reinforcing Technique (하이브리드 보강기법을 활용한 고강도 콘크리트 내민받침의 성능 향상)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.13-16
    • /
    • 2008
  • Corbels are short cantilevers that project from the faces of a column and are a type of stress disturbed member, resisting both the ultimate shear force applied to them by the beam, and the ultimate horizontal force caused by shrinkage, temperature changes, and creep of the supported elements. Recently, as there have been an increase in the use of high-strength concrete and the concern about corrosion problems, lots of researches about hybrid reinforcing technique, applying strategically high performance reinforcements to the concrete elements, are performed. In this study, fiber reinforced high strength concrete corbels were constructed and tested for applying hybrid reinforcing technique to the corbels using steel fibers and headed bars. The results showed that the performance in terms of load carrying capacities, stiffness, ductility, and crack width was improved, as the steel fibers were added and the percentage of steel fibers was increased. In addition, the corbel specimens used headed bars as main tension ties showed superior load carrying capacities, stiffness, and ductility to the corbel specimens anchored main tension ties by welding to the transverse bars.

  • PDF

Microstructural Morphology and Bending Performance Evaluation of Molded Microcomposites of Thermotropic LCP and PA6 (액정폴리머/폴리아미드6 미시복합재료의 내부구조 및 기계적 굽힘성능 평가)

  • ;Kiyoshi Takahashi
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.53-64
    • /
    • 1999
  • Microstructural morphology and bending strengths of moulded composites of thermotropic liquid crystalline polymer(LCP) and polyamide 6 (PA6) have been studied as a function of epoxy fraction. Injection-moulding of a composite plaque at a temperature below the melting point of the LCP fibrils generated a multi-layered structure: the surface skin layer with thickness of $65\;-\;120{\mu\textrm{m}}$ exhibiting a transverse orientation; the sub-skin layer with an orientation in the flow direction; the core layer with arc-curved flow patterns. The plaques containing epoxy 4.8vol% exhibited superior bending strength and large fracture strain. With an increase of epoxy fraction equal to and beyond 4.8vol%, geometry of LCP domains was changed from fibrillar shape to lamella-like one, which caused a shear-mode fracture. An analysis of the bending strength of the composite plaques by using a symmetric layered model beam suggested that addition of epoxy component altered not only the microstructural geometry but also the elastic moduli and strengths of the respective layers.

  • PDF

Prediction of the flexural overstrength factor for steel beams using artificial neural network

  • Guneyisi, Esra Mete;D'niell, Mario;Landolfo, Raffaele;Mermerdas, Kasim
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.215-236
    • /
    • 2014
  • The flexural behaviour of steel beams significantly affects the structural performance of the steel frame structures. In particular, the flexural overstrength (namely the ratio between the maximum bending moment and the plastic bending strength) that steel beams may experience is the key parameter affecting the seismic design of non-dissipative members in moment resisting frames. The aim of this study is to present a new formulation of flexural overstrength factor for steel beams by means of artificial neural network (NN). To achieve this purpose, a total of 141 experimental data samples from available literature have been collected in order to cover different cross-sectional typologies, namely I-H sections, rectangular and square hollow sections (RHS-SHS). Thus, two different data sets for I-H and RHS-SHS steel beams were formed. Nine critical prediction parameters were selected for the former while eight parameters were considered for the latter. These input variables used for the development of the prediction models are representative of the geometric properties of the sections, the mechanical properties of the material and the shear length of the steel beams. The prediction performance of the proposed NN model was also compared with the results obtained using an existing formulation derived from the gene expression modeling. The analysis of the results indicated that the proposed formulation provided a more reliable and accurate prediction capability of beam overstrength.

A Simple Method of Obtaining Exact Values of the Natural Frequencies of Vibration for Some Composite Laminated Structures with Various Boundary Condition (다양한 경계조건을 갖는 복합적층판의 간편한 고유진동수 해석방법)

  • Won, Chi Moon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Numerical method for eigenvalue problems are also very much involved in seeking such a solution. A method of calculating the natural frequency corresponding to the first mode of vibration of beam and tower structures with irregular cross-sections was developed and reported by Kim in 1974. Recently, this method was extended to two dimensional problems including composite laminates, and has been applied to composite plates with shear deformation effects. In this paper, application of this method to the specially orthotropic laminated plates with various boundary condition is accomplished and the result of analysis is presented.