• 제목/요약/키워드: beam shear

검색결과 2,148건 처리시간 0.031초

Analytical solutions to piezoelectric bimorphs based on improved FSDT beam model

  • Zhou, Yan-Guo;Chen, Yun-Min;Ding, Hao-Jiang
    • Smart Structures and Systems
    • /
    • 제1권3호
    • /
    • pp.309-324
    • /
    • 2005
  • This paper presents an efficient and accurate coupled beam model for piezoelectric bimorphs based on improved first-order shear deformation theory (FSDT). The model combines the equivalent single layer approach for the mechanical displacements and a layerwise modeling for the electric potential. General electric field function is proposed to reasonably approximate the through-the-thickness distribution of the applied and induced electric potentials. Layerwise defined shear correction factor (k) accounting for nonlinear shear strain distribution is introduced into both the shear stress resultant and the electric displacement integration. Analytical solutions for free vibrations and forced response under electromechanical loads are obtained for the simply supported piezoelectric bimorphs with series or parallel arrangement, and the numerical results for various length-to-thickness ratios are compared with the exact two-dimensional piezoelasticity solution. Excellent predictions with low error estimates of local and global responses as well as the modal frequencies are observed.

Dynamic behaviour of stiffened and damaged coupled shear walls

  • Meftah, S.A.;Tounsi, A.;Adda-Bedia, E.A.
    • Computers and Concrete
    • /
    • 제3권5호
    • /
    • pp.285-299
    • /
    • 2006
  • The free vibration of stiffened and damaged coupled shear walls is investigated using the mixed finite element method. The anisotropic damage model is adopted to describe the damage extent of the reinforced concrete shear wall element. The internal energy of a locally damaged shear wall element is derived. Polynomial shape functions established by Kwan are used to present the component of displacements vector on each point within the wall element. The principle of virtual work is employed to deduce the stiffness matrix of a damaged shear wall element. The stiffened system is reinforced by an additional stiffening beam at some level of the structure. This induces additional axial forces, and thus reduces the bending moments in the walls and the lateral deflection, and increases the natural frequencies. The effects of the damage extent and the stiffening beam on the free vibration characteristics of the structure are studied. The optimal location of the stiffening beam for increasing as far as possible the first natural frequency of vibration is presented.

Behavior of steel-concrete composite beam using angle shear connectors at fire condition

  • Davoodnabi, Seyed Mehdi;Mirhosseini, Seyed Mohammad;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.141-147
    • /
    • 2019
  • Fire is one of the environmental parameters affecting the structure causing element internal forces to change, as well as reducing the strength of the materials. One of the common types of floors in tall steel structures is the steel concrete composite slab. Shear connectors are used in steel and concrete composite beam in various shapes also has played significant role in a burning fire event of building with a steel concrete composite beam. The current study has reviewed the effects of temperature raising on the angle connector behavior through the use of push out tests and monotonic static force. The results have shown (1) the ductility of the samples is acceptable based on EC4 standard; (2) temperature raising has reduced the stiffness; (3) the shear ductility increment; and (4) the shear capacity reduction. Also, the amount of angle shear connector resistance has been decreased from 18.5% to 41% at ambient temperature up to $850^{\circ}C$.

드라이빙핀전용 전단연결재를 이용한 합성보의 탄소성 거동 (Elasto-Plastic Behaviors of Composite Beam using Shear Connectors installed in Driving Pins)

  • 양일승;오영호;이만재
    • 한국강구조학회 논문집
    • /
    • 제24권1호
    • /
    • pp.73-80
    • /
    • 2012
  • 합성보는 철골보와 콘크리트슬래브를 스터드볼트로 일체화한 구조이며, 일반적으로 용접을 이용한 스터드볼트(Stud Bolts)가 연결재로 많이 사용된다. 그러나, 스터드볼트는 감전사고와 같은 전기재해나 용접불량 등 문제점을 가지고 있다. 따라서, 드라이빙핀을 이용한 기계적 접합이 대안으로 대두되고 있다. 본 연구는 드라이빙핀 전용 제안형 전단연결재를 이용한 합성보의 횡하중(지진하중이나 풍하중)시 구조적 성능을 평가하고자 한다. 기존형 합성보과 제안형 합성보는 안정된 탄소성 거동을 나타내었으며 기둥주변에서 콘크리트 압괴로 내력이 저하되었다. 따라서, 제안형 합성보는 기존형 합성보를 대체할 수 있을 것으로 판단된다.

보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 푸쉬오버해석 (Pushover Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint)

  • 강석봉;김태용
    • 콘크리트학회논문집
    • /
    • 제24권5호
    • /
    • pp.517-524
    • /
    • 2012
  • 이 논문에서는 푸쉬오버해석을 통해 보-기둥 접합부 비탄성 전단거동과 고차모드를 고려한 횡하중 수직분포 형태가 구조물 거동에 미치는 영향을 알아보기 위해 지반조건 $S_B$ 내진설계범주 C에 대해서 5층 철근콘크리트 보통모멘트골조를 KBC2009에 맞게 구조설계 하였다. 보 및 기둥 부재의 휨모멘트-곡률 관계는 섬유모델(fiber model)로 확인하였으며 보-기둥 접합부 모멘트-회전각 관계는 simple and unified joint shear behavior model과 보-기둥 접합부 모멘트 평형관계를 이용하여 확인하였다. 푸쉬오버해석 결과 보-기둥 접합부를 강체로 고려하는 경우 구조물의 강성도 및 강도가 과대평가 되었으나 반응수정계수는 접합부 비탄성거동과 관계없이 KBC2009 보통모멘트골조 계수를 만족하여 구조 설계 과정에서 보-기둥 접합부의 비탄성 전단거동을 고려하지 않아도 문제가 없을 것으로 판단된다.

프리컷 방식을 적용한 기둥-보 공법의 수평전단내력 (Shear Performance of Post and Beam Construction by Pre-Cut Process)

  • 황권환;박주생;박문재
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권6호
    • /
    • pp.1-12
    • /
    • 2007
  • 한국형 목조건축 실현 및 국내산 조림 낙엽송의 유효 이용을 위해 전통목구조에 있어 널리 사용되는 짜맞춤 공법을 응용한 기계 프리컷 방식으로 드리프트 핀 접합한 낙엽송 집성재 기둥-보 곡법에 대해 수평전단내력성능을 평가하였다. 기계 프리컷 가공된 부재로부터 기둥-보 공법으로 이루어진 골조구조체, 골조와 경골목구조 공법을 혼용한 벽구조체에 대해 현행 KS F 2154 기준에 의거하여 수평전단반복시험을 행하여 얻어진 하중-변위로부터 전단 변형과 전단력의 관계를 산출하였다. 무재하식 수평전단 가력에 의해 최대 전단내력을 골조구조체에서 1.9 kN/m, 벽구조체에서 9.7 kN/m, 전단강성계수는 167 kN/rad, 8198 kN/rad로 각각 나타났다. 골조구조체는 벽구조체에 비해 하중 분담률이 20% 정도, 강성에 있어서는 2% 정도로 나타났으며, 전단내력벽의 최대 전단내력은 골조에 비해 상대적으로 변형성능이 낮게 나타났다. 일본건축학회의 벽배율 산정법에 의한 전단내력벽의 벽배율은 1.5로 산출되었다. 전단내력벽의 전단성능 향상을 위해서는 주각부 및 기둥-보, 못과 면재에 대한 차후 검토와 수평전단 가력법에 대한 검토가 필요한 것으로 판단되었다.

Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.721-736
    • /
    • 2017
  • In this paper, free vibration characteristics of functionally graded (FG) nanobeams embedded on elastic medium are investigated based on third order shear deformation (Reddy) beam theory by presenting a Navier type solution for the first time. The material properties of FG nanobeam are assumed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on third order shear deformation beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared to some cases in the literature. The obtained results are presented for the vibration analysis of the FG nanobeams such as the influences of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

철골 커플링 보-벽체 접합부의 변형 특성 (Deformation Characteristics of Steel Coupling Beam-Wall Connection)

  • 박완신;전에스더;한민기;김선우;황선경;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.435-438
    • /
    • 2005
  • The use of new hybrid systems that combine the advantages of steel and reinforced concrete structures has gained popularity. One of these new mixed systems consists of steel beams and reinforced concrete shear wall, which represents a cost- and time-effective type of construction. A number of previous studies have focused on examining the seismic response of steel coupling beams in a hybrid wall system. However, the shear transfer of steel coupling beam-wall connections with panel shear failure has not been thoroughly investigated. The objective of this research was to investigate the seismic performance of steel coupling beamwall connections governed by panel shear failure. To evaluate the contribution of each mechanism, depending upon connection details, an experimental study was carried out The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. It investigates the seismic behaviour of the steel coupling beams-wall connections in terms of the deformation characteristics. The results and discussion presented in this paper provide background for a companion paper that includes a design model for calculating panel shear strength of the steel coupling beam-wall connections.

  • PDF

사전균열이 발생한 철근콘크리트 보의 외적 포스트텐셔닝 전단보강에서 보강깊이의 효과 (Strengthening Depth Effect in Externally Post-tensioning Shear Strengthening of Pre-cracked Reinforced Concrete Beam)

  • 이수헌;신경재;이희두
    • 대한건축학회논문집:구조계
    • /
    • 제34권11호
    • /
    • pp.19-26
    • /
    • 2018
  • This paper presents the shear strengthening effect of externally post-tensioning (EPT) method using high-strength steel rod in pre-cracked reinforced concrete (RC) beams. Three- and four-point bending tests were performed on a total of 8 specimens by adjusting the strengthening depths in the deviator position of EPT. The effective strengthening depths were 435, 535, and 610 mm. The pre-loading up to about 2/3 of ultimate load capacity measured in unstrengthened RC beam were applied in the beam to be post-tensioned. The EPT method was then applied to the pre-damaged RC beams and re-loading was added until the end of the test. EPT restored deflections of 3 mm or more, which account for about 40% of deflection when the pre-loading was applied. The shear strengthening increases more than 3 times and 36~107% in terms of the stiffness and load-carrying capacity compared to unstrengthening RC beams. The increased load-carrying capacities of the post-tensioned beam with strengthening depths of 435 and 535 mm are almost the same as 36~61%, and those of 610 mm are 84~107%, which shows the greatest shear strengthening effect.

Experimental Study on Shear Connector for Precast Concrete Decks

  • Chung, Chul-Hun;Shim, Chang-Su;Jeong, Un-Yong
    • KCI Concrete Journal
    • /
    • 제13권1호
    • /
    • pp.61-67
    • /
    • 2001
  • For the design of shear connection for the composite precast concrete slabs. it is necessary to investigate its strength, stiffness, slip capacity and fatigue endurance. For theme purposes, push-out tests were performed with variations of the stud shank diameter and the compressive strength of the mortar. From the experimental studies, it could be observed that the deformation of the shear studs in a full-depth precast concrete slabs were greater than those in a cast-in-place slabs. The static strength of the shear connections obtained agree approximately with those evaluated from the tensile strength of the stud shear connectors owing to the effect of the bedding layer between the slabs and the beams. An empirical equation for the initial shear stiffness of a shear connection was also proposed. On the basis of the push-out tests, a full-scale composite beams with 8.0m span was designed and fatigue tests were carried out to study the behaviour of the stud shear connection and its effects on the flexural behaviour of the beam. The bonding arid friction between the concrete slab and the steel beam considerably increased the fatigue endurance of the shear connection.

  • PDF