• Title/Summary/Keyword: beam scanning

Search Result 710, Processing Time 0.023 seconds

Study on the evaporation of high melting temperature metal by using the manufactured electron hem gun system (전자총 시스템 제작과 이를 이용한 고융점 금속 증발에 관한 연구)

  • 정의창;노시표;김철중
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • An axial electron beam gun system, which emits the electron beam power of 50 kW, has been manufactured. The electron beam gun consists of two parts. One is the electron beam generation part. including the filament, cathode, and anode. The maximum beam current is 2 A and the acceleration voltage is 25 kV. The other part includes the focusing-, deflection-, and scanning coils. The beam diameter and ham trajectory can be controlled by these coils. The characteristic of each part is measured ior the optimum condition of evaporation process. Moreover, Helmholtz coil is installed inside the vacuum chamber to adjust the incident angel of the beam to the melting surface for the maximum evaporation. We report on the evaporation rates for zirconium(Zr) and gadolinium(Gd) metals which have the high melting temperatures.

Study on Real-Time Digital Filter Design as Function of Scanning Frequency of Focused Electron Beam (집속 전자 빔 장치에서 스캔 주파수에 따른 실시간 디지털 필터 설계에 관한 연구)

  • Kim, Seung-Jae;Oh, Se-Kyu;Yang, Kyung-Sun;Jung, Kwang-Oh;Kim, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.479-485
    • /
    • 2011
  • To acquire images in a thermionic-scanning electron-beam system, a scanning unit is needed to control the electron beam emitted from the tungsten filament source. In scanning the electron beam on the solid surface, the signalto-noise ratio depends on the scanning frequency. We used a digital filter to reduce noise by analyzing the real-time frequency of a secondary electron signal. The noise and the true image signal were well separated. We designed the digital filter via a DSP floating-point operation, and the noise elimination resulted in enhanced image quality in a highresolution mode.

Developing a Cantilever-type Near-field Scanning Optical Microscope Using a Single Laser for Topography Detection and Sample Excitation

  • Ng'ang'a, Douglas Kagoiya;Ali, Luqman;Lee, Yong Joong;Byeon, Clare Chisu
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.229-237
    • /
    • 2021
  • The capabilities of the near-field scanning optical microscope (NSOM) for obtaining high resolution lateral topographical images as well as for mapping the spectroscopic and optical properties of a sample below the diffraction limit of light have made it an attractive research field for most researchers dealing with optical characteristics of materials in nano scales. The apertured NSOM technique involves confining light into an aperture of sub-wavelength size and using it to illuminate a sample maintained at a distance equal to a fraction of the sub-wavelength aperture (near-field region). In this article, we present a setup for developing NSOM using a cantilever with a sub-wavelength aperture at the tip. A single laser is used for both cantilever deflection measurement and near-field sample excitation. The laser beam is focused at the apex of the cantilever where a portion of the beam is reflected and the other portion goes through the aperture and causes local near-field optical excitation of the sample, which is then raster scanned in the near-field region. The reflected beam is used for an optical beam deflection technique that yields topographical images by controlling the probe-sample in nano-distance. The fluorescence emissions signal is detected in far-field by the help of a silicon avalanche photodiode. The images obtained using this method show a good correlation between the topographical image and the mapping of the fluorescence emissions.

Numerical Analysis for Sintering of Metal Powder Layers of the Direct Metal Prototyping (직접식 조형법의 금속 분말 적층부 소결에 관한 연구)

  • 손현기;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.552-556
    • /
    • 1997
  • The Direct Metal Prototyping(DMP), one of the rapid prototyping technologies, allows the manufacturing of three-dimensional metallic parts using metal powders directly from the CAD data. Laser power and scanning speed are the most important variables of the process. The objective of this study is to obtain the design data for laser power and scanning speed to bond metal powders effectively using the finite element method. To obtain the design values, a numerical analysis considering two-dimensional heat transfer during the sintering of metal powder layers of the process was performed. The laser beam has been modeled to have directionality in its heat flux distribution, i. e., in the scanning direction a Gaussian beam mode distribution has been assumed and in the thickness direction a square beam mode distribution. The three-dimensional irregular distribution of metal powders of the powder layer is idealized as two-dimensional distribution in which metal powders are located regularly and periodically on the plate. In this study the design values of laser power vs scanning speed have been obtained. Temperature distribution and temperature variation of the powder layers with respect to time have been predicted. The commputed dsign data will be useful in determining the initial conditions of the process.

  • PDF

MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING

  • Kim, Hyun-Gil;Kim, Il-Hyun;Jung, Yang-Il;Park, Dong-Jun;Park, Jeong-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.521-528
    • /
    • 2014
  • The surface modification of engineering materials by laser beam scanning (LBS) allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS) structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and $Y_2O_3$ particles of $10{\mu}m$ were selected for ODS treatment using LBS. Through the LBS method, the $Y_2O_3$ particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at $500^{\circ}C$ was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive $Y_2O_3$ particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.

Commissioning and Validation of a Dedicated Scanning Nozzle at Samsung Proton Therapy Center

  • Chung, Kwangzoo;Han, Younyih;Ahn, Sung Hwan;Kim, Jin Sung;Nonaka, Hideki
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.267-271
    • /
    • 2016
  • In this study, we present the commissioning and validation results of a dedicated scanning nozzle. The dedicated scanning nozzle is installed in one of the two gantry treatment rooms at Samsung Proton Therapy Center. Following a successful completion of the acceptance test, the commissioning process including the beam data measurement for treatment planning system has been conducted. Extended measurements have been conducted as a validation of the clinical performance of the nozzle and various quality assurance protocols have been prepared.

A Study on Transport Mechanism of the Ultrasonic Transporting System using Laser Scanning Vibrometer (Laser Scanning Vibrometer를 이용한 초음파 이송시스템의 이송 메커니즘에 관한 연구)

  • 정상화;신병수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.841-844
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the conventional sliding system is required. These systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problem. In this paper, the vibration behavior of flexural beam in the ultrasonic transport system is verified using Laser Scanning Vibrometer. The experiments for verifying vibration are performed in three conditions such as in the maximum transport speed, in the zero speed, and in the change of transport direction.

  • PDF

Laser Scanner Using a Computer-Generated Hologram (전자계산기 홀로그램을 이용한 레이저 주사장치)

  • Yun, Hee Cheol;Yi, Jong Chang;Jang, Ju Seog;Shin, Sang Yung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.2
    • /
    • pp.257-263
    • /
    • 1986
  • A laser scanner utilizing a computer-generated hologram(CGH) as beam deflector is reported. The CGH optical element has been used mainly for under-filled scanning. Here, a CGH optical element for overfilled scanning is proposed. It can achieve, under the same limitation of fabrication accuracy, better resolution and longer scan length than those for under-filled scanning. Measured scanning characteristics of the laser scanner show the scan length of 40 cm and the beam diameter of 100\ulcorner, where the designed minimum distance between the lines of CGH is 8\ulcorner.

  • PDF

Manipulation of Carbon Nanotube Tip Using Focused Ion Beam (집속이온빔을 이용한 탄소나노튜브 팁의 조작)

  • Yoon, Yeo-Hwan;Park, June-Ki;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.122-127
    • /
    • 2006
  • This paper reports on the development of carbon nanotube tip modified with focused ion beam(FIB). We used an electric field which causes dielectrophoresis, to align and deposit CNTs on a metal-coated canning Probe Microscope (SPM) tip. Using the CNT attached SPM tip, we have obtained an enhanced resolution and wear property compared to that from the bare silicon tip through the scanning of the surface of the bio materials. The carbon nanotube tip was aligned toward the source of the ion beam allowing their orientation to be changed at precise angles. By this technique, metal coated carbon nanotube tips that are several micrometer in length are prepared for SPM.

자율주행 로봇을 위한 Laser Range Finder

  • 차영엽;권대갑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.266-270
    • /
    • 1992
  • In this study an active vision system using a laser range finder is proposed for the navigation of a mobile robot in unknown environment. The laser range finder consists of a slitted laser beam generator, a scanning mechanism, CCD camera, and a signal processing unit. A laser beam from laser source is slitted by a set of cylindrical lenses and the slitted laser beam is emitted up and down and rotates around the robot by the scanning mechanism. The image of laser beam reflected on the surface of an object is engraved on the CCD array. A high speed image processing algorithm is proposed for the real-time navigation of the mobile robot. Through experiments it is proved that the accurate and real-time recognition of environment is able to be realized using the proposed laser range finder.