Browse > Article
http://dx.doi.org/10.5516/NET.07.2014.027

MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING  

Kim, Hyun-Gil (LWR Fuel Technology Division, KAERI)
Kim, Il-Hyun (LWR Fuel Technology Division, KAERI)
Jung, Yang-Il (LWR Fuel Technology Division, KAERI)
Park, Dong-Jun (LWR Fuel Technology Division, KAERI)
Park, Jeong-Yong (LWR Fuel Technology Division, KAERI)
Koo, Yang-Hyun (LWR Fuel Technology Division, KAERI)
Publication Information
Nuclear Engineering and Technology / v.46, no.4, 2014 , pp. 521-528 More about this Journal
Abstract
The surface modification of engineering materials by laser beam scanning (LBS) allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS) structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and $Y_2O_3$ particles of $10{\mu}m$ were selected for ODS treatment using LBS. Through the LBS method, the $Y_2O_3$ particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at $500^{\circ}C$ was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive $Y_2O_3$ particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.
Keywords
Laser Beam Scanning; ODS; Zircaloy; Strength; Surface Modification;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Ukai, T. Nishida, H. Okada, M. Fujiwara, J. Nucl. Sci. Technol. 34 (1997) pp. 256-263.   DOI
2 C. Cayron, E. Rath, I. Chu, S. Launois, J. Nucl. Mater. 335 (2004) pp. 83-102.   DOI   ScienceOn
3 F. Lusquinos, J. Pou, F. Quintero, M. Perez-Amor, Surface & Coatings Technology, 202 (2008) pp. 1588-1593.   DOI   ScienceOn
4 R. Anandkumar, A. Almeida, R. Colaco, R. Vilar, V. Ocelik, J.Th.M.De. Hosson, Surface & Coatings Technology, 201 (2007) pp. 9497-9505.   DOI   ScienceOn
5 A. Ibrahim, H. Salem, S. Sedky, Surface & Coatings Technology, 203 (2009) pp. 3579-3589.   DOI
6 J. Yu, W. We, M. Wang, Surface & Coatings Technology, 72 (1995) pp. 112-119.   DOI   ScienceOn
7 ASTM E8 - 82; Standard methods of tension testing of metallic materials
8 Y. Huang, Optics & Laser Tech. 43 (2011) p. 935.
9 C. Kim, M.J. Kang, Y.D. Park, Procedia Eng. 10 (2011) p. 2226.   DOI   ScienceOn
10 D.K. Deardorff, E.T. Hayes, Trans. Am. Inst. Min. Engers 206 (1956) p. 506.
11 M. Foex, High Temp.-High Press. 9 (1977) p. 269.
12 R.A. Holt, J. Nucl. Mater. 35 (1970) p. 322.   DOI   ScienceOn
13 H.G. Kim, J.H. Baek, S.D. Kim, Y.H. Jeong, J. Nucl. Mater. 372 (2008) p. 304.   DOI   ScienceOn
14 H.G. Kim, I.H. Kim, J.Y. Park, Y.H. Koo, Nucl. Eng. & Tech. 45(4) (2013) p. 505.   DOI
15 H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, Y.H. Koo, HIGH-TEMPERATURE OXIDATION BEHAVIOR OF CR-COATED ZIRCONIUM ALLOY, TopFuel 2013, Charlotte, North Carolina, September 15-19, 2013, p. 843.
16 B. Cheng, Y.J. Kim, P. Chou, J. Deshon, DEVELOPMENT OF Mo-ALLOY FOR LWR FUEL CLADDING TO ENHANCE FUEL TOLERANCE TO SEVERE ACCIDENTS, TopFuel 2013, Charlotte, North Carolina, September 15-19, 2013, p. 852.
17 C.H. Zhang, A. Kimura, R. Kasada, J. jand, H. Kishimoto, Y.T. Yang, J. Nucl. Mater. 417 (2011) p. 221.   DOI   ScienceOn
18 I. I-.Trujillo, M. Leflem, J-.C. Brachet, M. Lesaux, D. Hamon, S. Muller, V. Vandenberghe, M. Tupin, E. Papin, E. Monsifrot, A. Billard, and F. Schuster, ASSESSMENT AT CEA OF COATED NUCLEAR FUEL CLADDING FOR LWRS WITH INCREASED MARGINS IN LOCA AND BEYOND LOCA CONDITIONS, TopFuel 2013, Charlotte, North Carolina, September 15-19, 2013, p. 860.
19 J.S. Benjamin, Metall. Trans. 1 (1970) pp. 2943-2951.