• Title/Summary/Keyword: beam model

Search Result 3,455, Processing Time 0.039 seconds

Evaluation of Usefulness of Iterative Metal Artifact Reduction(IMAR) Algorithm In Proton Therapy Planning (양성자 치료계획에서 Iterative Metal Artifact Reduction(IMAR) Algorithm 적용의 유용성 평가)

  • Han, Young Gil;Jang, Yo Jong;Kang, Dong Heok;Kim, Sun Young;Lee, Du Hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • Purpose: To evaluate the accuracy of the Iterative Metal Artifact Reduction (IMAR) algorithm in correcting CT (computed tomography) images distorted due to a metal artifact and to evaluate the usefulness when proton therapy plan was plan using the images on which IMAR algorithm was applied. Materials and Methods: We used a CT simulator to capture the images when metal was not inserted in the CIRS model 062 Phantom and when metal was inserted in it and Artifact occurred. We compared the differences in the CT numbers from the images without metal, with a metal artifact, and with IMAR algorithm by setting ROI 1 and ROI 2 at the same position in the phantom. In addition, CT numbers of the tissue equivalents located near the metal were compared. For the evaluation of Rando Phantom, CT was taken by inserting a titanium rod into the spinal region of the Rando phantom modelling a patient who underwent spinal implant surgery. In addition, the same proton therapy plan was established for each image, and the differences in Range at three sites were compared. Results: In the evaluation of CIRS Phantom, the CT numbers were -6.5 HU at ROI 1 and -10.5 HU at ROI 2 in the absence of metal. In the presence of metal, Fe, Ti, and W were -148.1, -45.1 and -151.7 HU at ROI 1, respectively, and when the IMAR algorithm was applied, it increased to -0.9, -2.0, -1.9 HU. In the presence of metal, they were 171.8, 63.9 and 177.0 HU at ROI 2 and after the application of IMAR algorithm they decreased to 10.0 6,7 and 8.1 HU. The CT numbers of the tissue equivalents were corrected close to the original CT numbers except those in the lung located farthest. In the evaluation of the Rando Phantom, the mean CT numbers were 9.9, -202.8, and 35.1 HU at ROI 1, and 9.0, 107.1, and 29 HU at ROI 2 in the absence, presence of metal, and in the application of IMAR algorithm. The difference between the absence of metal and the range of proton beam in the therapy was reduced on the average by 0.26 cm at point 1, 0.20 cm at point 2, and 0.12 cm at point 3 when the IMAR algorithm was applied. Conclusion: By applying the IMAR algorithm, the CT numbers were corrected close to the original ones obtained in the absence of metal. In the beam profile of the proton therapy, the difference in Range after applying the IMAR algorithm was reduced by 0.01 to 3.6 mm. There were slight differences as compared to the images absence of metal but it was thought that the application of the IMAR algorithm could result in less error compared with the conventional therapy.

  • PDF

Development of Model Plans in Three Dimensional Conformal Radiotherapy for Brain Tumors (뇌종양 환자의 3차원 입체조형 치료를 위한 뇌내 주요 부위의 모델치료계획의 개발)

  • Pyo Hongryull;Lee Sanghoon;Kim GwiEon;Keum Kichang;Chang Sekyung;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • Purpose : Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this technique to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plant for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site of brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decide. Materials and Methods : Imaginary tumors, with sizes commonly observed in the clinic, were designed for each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal $tumor-5.7\times8.2\times7.6\;cm$, suprasellar $tumor-3\times4\times4.1\;cm$, thalamic $tumor-3.1\times5.9\times3.7\;cm$, frontoparietal $tumor-5.5\times7\times5.5\;cm$, and occipitoparietal $tumor-5\times5.5\times5\;cm$. Plans using paralled opposed 2 portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed using beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were compared with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain was selected. Results : 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D $plans:27\%,\;8\%\rightarrow\;3D\;plans:1\%,\;1\%$). Various dose statistic values did not show any consistent trend. A 3D plan using 3 noncoplanar portals was selected as a model radiotherapy plan. 2) Suprasellar tumor; NTCPs of all 3D plans and 2D plans did not show significant difference because the total dose of this tumor was only 54 Gy. DVHs of normal brain and brainstem were significantly different for different plans. D5, V85, V95 and mean values showed some consistent trend that was compatible with DVH. All 3D plans were superior to 2D plans even when 3 portals (fronto-vertex and 2 lateral fields) were used for 2D plans. A 3D plan using 7 portals was worse than plans using fewer portals. A 3D plan using 5 noncoplanar portals was selected as a model plan. 3) Thalamic tumor; NTCPs of all 3D plans were lower than the 2D plans when the total dose was elevated to 72 Gy. DVHs of normal tissues showed similar results. V83, V85, V95 showed some consistent differences between plans but not between 3D plans. 3D plans using 5 noncoplanar portals were selected as a model plan. 4) Parietal (fronto- and occipito-) tumors; all NTCPs of the normal brain in 3D plans were lower than in 2D plans. DVH also showed the same results. V83, V85, V95 showed consistent trends with NTCP and DVH. 3D plans using 5 portals for frontoparietal tumor and 6 portals for occipitoparietal tumor were selected as model plans. Conclusion : NTCP and DVH showed reasonable differences between plans and were through to be useful for comparing plans. All 3D plans were superior to 2D plans. Best 3D plans were selected for tumors in each site of brain using NTCP, DVH and finally by the planner's decision.

Discrete Optimum Design of Semi-rigid Steel Frames Using Refined Plastic Hinge Analysis and Genetic Algorithm (개선소성힌지해석과 유전자 알고리즘을 이용한 반강접 강골조의 이산최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Kang, Moon Myoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.201-213
    • /
    • 2004
  • A GA-based optimum design algorithm and a program for plane steel frame structures with semi-rigid connections are presented. The algorithm is incorporated with the refined plastic hinge analysis method wherein geometric nonlinearity is considered by using the stability functions of beam-column members, and material nonlinearity, by using the gradual stiffness degradation model that includes the effects of residual stresses, moment redistribution through the occurrence of plastic hinges, semi-rigid connections, and geometric imperfection of members. In the genetic algorithm, the tournament selection method and micro-GAs are employed. The fitness function for the genetic algorithm is expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions are expressed as the weight of steel frames and the constraint functions, respectively. In particular, the constraint functions fulfill the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimal design results of two plane steel frames with rigid and semi-rigid connections are compared.

An Improved Method for Initial Shape Analysis of Cable-Stayed Bridges (사장교의 개선된 초기형상 해석법)

  • Kim, Moon Young;Kyung, Yong Soo;Lee, Jun Sok
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.175-185
    • /
    • 2003
  • The extended tangent stiffness matrices and force-deformation relations of the elastic catenary element were initially derived through the addition of the unstrained length of cables to unknown nodal displacements. A beam-column element was then introduced to model the deck and pylon of cable-stayed bridges. The conventional geometric nonlinear analysis, initial force method, and TCUD method were summarized, with an effective method combining two methods presented to determine the initial shapes of cable-stayed bridges with dead loads. In this combined method, TCUD method was applied to eliminate vertical and horizontal displacements at cable-supported points of decks and on top of pylons, respectively. The initial force method was also adopted to eliminate horizontal and vertical displacements of decks and pylons, Finally, the accuracy and validity of the proposed combined method were demonstrated through numerical examples.

An Improved Method for Initial Shape Analysis of Subpension Bridges (현수교의 개선된 초기형상 해석법)

  • Kim, Moon Young;Kyung, Yong Soo;Lee, Jun Sok
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.219-229
    • /
    • 2003
  • The extended tangent stiffness matrices and force-deformation relations of the elastic catenary element were initially derived through the addition of the unstrained length of cables to unknown nodal 'displacements. A beam-column element was then introduced to model the deck and pylon of cable-stayed bridges. The conventional geometric nonlinear analysis, initial force method, and TCUD method were summarized, with an effective method combining two methods presented to determine the initial shapes of cable-stayed bridges with dead loads. In this combined method, TCUD method was applied to eliminate vertical and horizontal displacements at cable-supported points of decks and on top of pylons, respectively. The initial force method was also adopted to eliminate horizontal and vertical displacements of decks and pylons. Finally, the accuracy and validity of the proposed combined method were demonstrated through numerical examples.

Cyclic Test for RC Frame with Infilled Steel Plate (강판채움벽을 갖는 RC 골조에 대한 반복가력 실험)

  • Choi, In Rak;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.115-125
    • /
    • 2009
  • An experimental study was performed to investigate the cyclic behavior of the reinforced concrete frame with infilled steel plate. For this purpose, three-story compositewalls using infilled steel plates (RCSPW) were tested. The parameters for this test were the reinforcement ratio of the column and opening in the infilled steel plate. A reinforced concrete infilled wall (RCIW) and a reinforced concrete frame (RCF) were also tested for comparison. The deformation capacity of the RCSPW specimen was significantly greater than that of the RCIW specimen, although the two specimens exhibited the same load-carrying capacity. Like the steel plate walls with the steel boundary frame, RCSPW specimens showed excellent strength, deformation capacity, and energy dissipation capacity. Furthermore, by using infilled steel plates, shear cracking and failure of the column-beam joint were prevented. By using a strip model, the stiffness and strength of the RCSPW specimens were predicted. The results were compared with the test results.

Soft Magnetic Property Analysis of Nanocrystalline Fe-Al-O Film with the Change of Microstructure (나노 결정립 Fe-Al-O 산화막의 미세구조 변화에 따른 연자기적 특성 분석)

  • Lee, Young-Woo;Park, Bum-Chan;Kim, Chong-Oh;Moon, Ji-Hyun;Choi, Yong-Dae
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.59-64
    • /
    • 2004
  • We investigated the soft magnetic properties of nanocrystalline Fe-Al-O film as etching the oxide film with ion beam etching method. It is thought that the grain size of Fe-Al-O film increases as the thickness decreases. The coercivity and squareness increase with decreasing thickness. The surface curvature of Am images increases when the etching experiment proceeds. This phenomena could be due to the grain growth which occurs during sputtering. This grain growth could be assisted by the the plasma energy during sputtering. Therefore proper thickness should be searched to acquire the good soft magnetic properties for the nanocrystalline film material. Good soft magnetic properties of Fe-Al-O film was acquired at the thickness of more than 900 nm.

Shear Behavior and Performance of Deep Beams Made with Self-Compacting Concrete

  • Choi, Y.W.;Lee, H.K.;Chu, S.B.;Cheong, S.H.;Jung, W.Y.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.65-78
    • /
    • 2012
  • An experimental study was carried out to evaluate fresh properties of a moderately high-strength (high-flowing) self-compacting concrete (SCC) and to investigate shear behavior and performance of deep beams made with SCC. Fresh and hardened properties of normal concrete (NC) and SCC were evaluated. The workability and compacting ability were observed based on casting time and number of surface cavities, respectively. Four-point loading tests on four deep beams (two made with SCC and two with NC) were then conducted to investigate their shear behavior and performance. Shear behavior and performance of beams having two different web reinforcements in shear were systematically investigated in terms of crack pattern, failure mode, and load-deflection response. It was found from the tests that the SCC specimen having a normal shear reinforcement condition exhibited a slightly higher load carrying capacity than the corresponding NC specimen, while the SCC specimen having congested shear reinforcement condition showed a similar load carrying capacity to the corresponding NC specimen. In addition, a comparative study between the present experimental results and theoretical results in accordance with ACI 318 (Building Code Requirements for Reinforced Concrete (ACI 318-89) and Commentary-ACI 318R-89, 1999), Hsu-Mau's explicit method (Hsu, Cem Concr Compos 20:419-435, 1998; Mau and Hsu, Struct J Am Concr Inst 86:516-523, 1989) and strut-and-tie model suggested by Uribe and Alcocer (2002) based on ACI 318 Appendix A (2008) was carried out to assess the applicability of the aforementioned methods to predict the shear strength of SCC specimens.

Analysis on the Hydroelasticity of Whole Ship Structure by Coupling Three-dimensional BEM and FEM (3차원 경계요소법과 전선 유한요소 해석의 연성을 통한 전선 유탄성 해석)

  • Kim, Kyong-Hwan;Bang, Je-Sung;Kim, Yong-Hwan;Kim, Seung-Jo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.312-326
    • /
    • 2012
  • This paper considers a fully coupled 3D BEM-FEM analysis for the ship structural hydroelasticity problem in waves. Fluid flows and structural responses are analyzed by using a 3D Rankine panel method and a 3D finite element method, respectively. The two methods are fully coupled in the time domain using a fixed-point iteration scheme, and a relaxation scheme is applied for improve convergence. In order to validate the developed method, numerical tests are carried out for a barge model. The computed natural frequency, motion responses, and time histories of stress are compared with the results of the beam-based hydroelasticity program, WISH-FLEX, which was thoroughly validated in previous studies. This study extends to a real-ship application, particularly the springing analysis for a 6500 TEU containership. Based on this study, it is found that the present method provides reliable solutions to the ship hydroelasticity problems.

Shear Behavior of Web Element in PSC Beams Incorporated with Arch Action (아치작용을 고려한 PSC보의 복부전단거동)

  • Jeong, Je Pyong;Shin, Geun Ock;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • It is well known that axial tension decreases the shear strength of RC & PSC beams without transverse reinforcement, and axial compression increases the shear resistance. What is perhaps not very well understood is how much the shear resistance capacity is influenced by axial load. RC beams without shear reinforcement subjected to large axial compression and shear may fail in a very brittle manner at the instance of first diagonal cracking. As a result, a conservative approach should be used for such members. According to the ACI Code, the shear strength in web is calculated by effect of axial force and the vertical force in the stirrups calculated by $45^{\circ}$ truss model. This study was performed to examine the effect of axial force in reinforced concrete beams by nonlinear FEM program (ATENA-2D).