Evaluation of Usefulness of Iterative Metal Artifact Reduction(IMAR) Algorithm In Proton Therapy Planning

양성자 치료계획에서 Iterative Metal Artifact Reduction(IMAR) Algorithm 적용의 유용성 평가

  • Han, Young Gil (Department of Proton Therapy Center, National Cancer Center) ;
  • Jang, Yo Jong (Department of Proton Therapy Center, National Cancer Center) ;
  • Kang, Dong Heok (Department of Proton Therapy Center, National Cancer Center) ;
  • Kim, Sun Young (Department of Proton Therapy Center, National Cancer Center) ;
  • Lee, Du Hyeon (Department of Proton Therapy Center, National Cancer Center)
  • 한영길 (국립암센터 양성자치료센터) ;
  • 장요종 (국립암센터 양성자치료센터) ;
  • 강동혁 (국립암센터 양성자치료센터) ;
  • 김선영 (국립암센터 양성자치료센터) ;
  • 이두현 (국립암센터 양성자치료센터)
  • Published : 2017.06.30

Abstract

Purpose: To evaluate the accuracy of the Iterative Metal Artifact Reduction (IMAR) algorithm in correcting CT (computed tomography) images distorted due to a metal artifact and to evaluate the usefulness when proton therapy plan was plan using the images on which IMAR algorithm was applied. Materials and Methods: We used a CT simulator to capture the images when metal was not inserted in the CIRS model 062 Phantom and when metal was inserted in it and Artifact occurred. We compared the differences in the CT numbers from the images without metal, with a metal artifact, and with IMAR algorithm by setting ROI 1 and ROI 2 at the same position in the phantom. In addition, CT numbers of the tissue equivalents located near the metal were compared. For the evaluation of Rando Phantom, CT was taken by inserting a titanium rod into the spinal region of the Rando phantom modelling a patient who underwent spinal implant surgery. In addition, the same proton therapy plan was established for each image, and the differences in Range at three sites were compared. Results: In the evaluation of CIRS Phantom, the CT numbers were -6.5 HU at ROI 1 and -10.5 HU at ROI 2 in the absence of metal. In the presence of metal, Fe, Ti, and W were -148.1, -45.1 and -151.7 HU at ROI 1, respectively, and when the IMAR algorithm was applied, it increased to -0.9, -2.0, -1.9 HU. In the presence of metal, they were 171.8, 63.9 and 177.0 HU at ROI 2 and after the application of IMAR algorithm they decreased to 10.0 6,7 and 8.1 HU. The CT numbers of the tissue equivalents were corrected close to the original CT numbers except those in the lung located farthest. In the evaluation of the Rando Phantom, the mean CT numbers were 9.9, -202.8, and 35.1 HU at ROI 1, and 9.0, 107.1, and 29 HU at ROI 2 in the absence, presence of metal, and in the application of IMAR algorithm. The difference between the absence of metal and the range of proton beam in the therapy was reduced on the average by 0.26 cm at point 1, 0.20 cm at point 2, and 0.12 cm at point 3 when the IMAR algorithm was applied. Conclusion: By applying the IMAR algorithm, the CT numbers were corrected close to the original ones obtained in the absence of metal. In the beam profile of the proton therapy, the difference in Range after applying the IMAR algorithm was reduced by 0.01 to 3.6 mm. There were slight differences as compared to the images absence of metal but it was thought that the application of the IMAR algorithm could result in less error compared with the conventional therapy.

목 적: CT(computed tomography) 영상에서 Metal Artifact로 인해 왜곡된 영상을 보정하는 Iterative Metal Artifact Reduction(IMAR) Algorithm의 정확성을 평가하고 양성자 치료계획에서 IMAR Algorithm 적용의 유용성을 평가하고자 한다. 대상 및 방법: CT simulator를 이용하여 CIRS Phantom 내에 금속을 삽입한 것과 삽입하지 않은 영상을 각각 촬영하였다. Phantom 내의 동일한 위치에 ROI1, ROI2를 설정하여 금속이 없는 경우의 영상과 금속으로 인한 Artifact가 발생한 영상, IMAR Algorithm을 적용한 영상에서 CT Number값의 차이를 비교하였다. 또, 금속 주변에 위치한 조직등가물질의 CT Number값을 비교하였다. 척추에 임플란트 시술을 시행한 환자를 가정하여 Rando 팬텀의 척추 부위에 Titanium 봉을 삽입하여 CT 촬영을 하였다. IMAR Algorithm 적용 전과 후의 영상에서 같은 부위에 ROI 1, ROI 2를 설정하여 CT Number값을 측정하고, 각각의 영상에 동일한 양성자 치료계획을 세워 세 지점에서 양성자선의 비정(Range)의 차이를 비교하였다. 결 과: CIRS Phantom 평가에서 금속이 없는 경우의 평균 CT number값은 ROI 1에서 -6.5 HU, ROI 2에서 -10.5 HU였다. 금속이 있는 경우 Fe, Ti, W 순으로 ROI 1에서 -148.1, -45.1, -151.7 HU였으며 IMAR Algorithm을 적용 하였을 때는 -0.9, -2.0, -1.9 HU로 증가하였다. ROI 2에서는 금속이 있는 경우 171.8, 63.9, 177.0 HU였으며 IMAR Algorithm 적용 후에는 10.0, 6.7, 8.1 HU로 감소하였다. 조직등가물질의 CT Number값은 가장 멀리 위치한 폐를 제외하고 모두 원래의 CT Number값에 가깝게 보정이 되었다. Rando Phantom 평가는 금속이 없는 경우와 금속이 있는 경우, IMAR Algorithm을 적용하였을 때 평균 CT Number값은 각각 ROI 1에서 9.9, -202.8, 35.1 HU였으며 ROI 2에서 9.0, 107.1, 29 HU였다. 치료계획에서 금속이 없을 때와 양성자선의 Range의 차이는 IMAR Algorithm을 적용하였을 때 1번 지점에서 평균 0.26 cm 감소하였으며 2번 지점에서 평균 0.20 cm 감소하였다. 3번 지점에서는 평균 0.12 cm 감소하였다. 결 론: IMAR Algorithm을 적용함으로써 CT Number값은 금속이 없을 때의 원래의 값에 가깝게 보정되었다. 또, 양성자 치료계획의 Beam Profile에서 IMAR Algorithm 적용 후 비정의 차이가 0.01에서 최대 3.6 mm 줄어들었다. Artifact가 존재하지 않는 영상과 비교하여 약간의 차이는 존재하지만 양성자의 비정에 따른 선량의 급격한 변화를 고려한다면 금속이 있는 환자에게 IMAR Algorithm의 적용은 유용할 것으로 사료된다.

Keywords

References

  1. 이상태. "TEXTBOOK of Computed Tomography". 청구문화사. 2005
  2. F. E. Boas and D. Fleischmann,: Computed tomography artifacts: Causes and reduction techniques. Imaging in Medicine 4 (2) 2012;229-240 https://doi.org/10.2217/iim.12.13
  3. Li H, Noel C, Chen H, et al.: Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simuations in radiation therapy. Med Phys 2012; 39:7507-17 https://doi.org/10.1118/1.4762814
  4. Huang JY, Kerns JR, Nute JL, et al.: An evaluation of three commercially available metal artifact reduction methods for CT imaging. Phys Med Biol 2015;60:1047-67 https://doi.org/10.1088/0031-9155/60/3/1047
  5. Morsbach F, Bickelhaupt S, Wanner GA, et al.: Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions. Radiology 2013;268:237-244 https://doi.org/10.1148/radiol.13122089
  6. Morsbach F, Wurnig M, Kunz DM, et al.: Metal artefact reduction from dental hardware in carotid CT angiography using iterative reconstructions. Eur Radiol 2013;23:2687-2694 https://doi.org/10.1007/s00330-013-2885-z
  7. Maerz M, Mittermair P, Krauss A, et al:. Iterative metal artifact reduction improves dose calculation accuracy. Strahlentherapie und Onkologie 2016;192.6:403-413
  8. BAR E, Schwahofer A, Kuchenbecker S, et al.: Improving radiotherapy planning in patients with metallic implants using the iterative metal artifact reduction (iMAR) algorithm. Biomedical Physics & Engineering Express, 2015; 1.2: 025206 https://doi.org/10.1088/2057-1976/1/2/025206
  9. Paganetti H.: Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol, Jun 7 2012;57(11):R99-117 https://doi.org/10.1088/0031-9155/57/11/R99
  10. LEVIN, W. P., et al. Proton beam therapy. British journal of Cancer, 2005; 93.8: 849-854 https://doi.org/10.1038/sj.bjc.6602754
  11. AXENTE, Marian, et al. Clinical evaluation of the iterative metal artifact reduction algorithm for CT simulation in radiotherapy. Medical physics, 2015;42.3: 1170-1183 https://doi.org/10.1118/1.4906245