• Title/Summary/Keyword: beam length

Search Result 1,512, Processing Time 0.026 seconds

Analysis of RC beam with unbonded or exposed tensile steel reinforcements and defective stirrup anchorages for shear strength

  • Wang, Xiao-Hui;Liu, Xi-La
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.59-78
    • /
    • 2012
  • Although the effect of corrosion of reinforcing bar on the shear behavior of the reinforced concrete (RC) beam had been simulated by tests of the beam with unbonded, half-exposed or whole-exposed tensile steel reinforcements as well as defective stirrup anchorages, theoretical methods to accurately predict remaining capacity of this kind of RC beams, especially shear capacity, are still lacking. Considering the possible position of the critical inclined crack, the actual pattern of strains in the concrete body within the partial length and the proposed compatibility condition of deformations of the RC beam, shear strength of the RC beam with unbonded or exposed tensile steel reinforcements and/or defective stirrup anchorages is predicted. Comparison between the model's predictions with the experimental results published in the literature shows the practicability of the proposed model. Influence of the length of unbonded or exposed tensile steel reinforcements and the percentage of stirrups lacked end anchorages on the shear strength of the RC beam is discussed. It is concluded that, the shear strength of the RC beam with unbonded or exposed tensile steel reinforcements and/or defective stirrup anchorages is greatly influenced by the length of unbonded or exposed tensile steel reinforcements and the percentage of stirrups lacked end anchorages, this influence can be adverse, insignificant or even favourable, dependent on the given parameters of the corresponding normal bonded RC beam.

Intelligent computer modelling and simulation for the large amplitude of nano systems

  • Yi, Wenjuan
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • The nonlinear dynamic behavior of a nonuniform small-scale nonlocal beam is investigated in this work. The nanobeam is theoretically modeled using the nonlocal Eringen theory, as well as a few of Von-nonlinear Kármán's theories and the classical beam theory. The Hamilton principle extracts partial differential equations (PDE) of an axially functionally graded (AFG) nano-scale beam consisting of SUS304 and Si3N4 throughout its length, and an elastic Winkler-Pasternak substrate supports the tapered AFG nanobeam. The beam thickness is a function of beam length, and it constantly varies throughout the length of the beam. The numerical solution strategy employs an iteration methodology connected with the generalized differential quadratic method (GDQM) to calculate the nonlinear outcomes. The nonlinear numerical results are presented in detail to examine the impact of various parameters such as nonlinear amplitude, nonlocal parameter, the component of the elastic foundation, rate of cross-section change, and volume fraction parameter on the linear and nonlinear free vibration characteristics of AFG nanobeam.

Geometrical Non-linear Analyses of Tapered Variable-Arc-Length Beam subjected to Combined Load (조합하중을 받는 변단면 변화곡선 보의 기하 비선형 수치해석)

  • Lee, Byoung-Koo;Oh, Sang-Jin;Lee, Tae-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • This paper deals with geometrical non-linear analyses of the tapered variable-arc-length beam, subjected to the combined load with an end moment and a point load. The beam is supported by a hinged end and a frictionless sliding support so that the axial length of the deformed beam can be increased by its load. Cross sections of the beam whose flexural rigidities are functionally varied with the axial coordinate. The simultaneous differential equations governing the elastica of such beam are derived on the basis of the Bernoulli-Euler beam theory. These differential equations are numerically solved by the iteration technique for obtaining the elastica of the deformed beam. For validating theories developed herein, laboratory scaled experiments are conducted.

Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.381-396
    • /
    • 2020
  • Analytical investigation of the fracture of inhomogeneous beam with two parallel lengthwise cracks is performed. The thickness of the beam varies continuously along the beam length. The beam is loaded in three-point bending. Two beam configurations with different lengths of the cracks are analyzed. The two cracks are located arbitrary along the thickness of the beam. Solutions to the strain energy release rate are derived assuming that the material has non-linear elastic mechanical behavior. Besides, the beam exhibits continuous material inhomogeneity along its thickness. The balance of the energy is analyzed in order to derive the strain energy release rate. Verifications of the solutions are carried-out by considering the complementary strain energy stored in the beam configurations. The influence of the continuous variation of the thickness along the beam length on the lengthwise fracture behavior is investigated. The dependence of the lengthwise fracture on the lengths of the two parallel cracks is also studied.

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

Optimum shape and length of laterally loaded piles

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.121-130
    • /
    • 2018
  • This study deals with optimum geometry design of laterally loaded piles in a Winkler's medium through the Fully Stressed Design (FSD) method. A numerical algorithm distributing the mass by means of the FSD method and updating the moment by finite elements is implemented. The FSD method is implemented here using a simple procedure to optimise the beam length using an approach based on the calculus of variations. For this aim two conditions are imposed, one transversality condition at the bottom end, and a one sided constraint for moment and mass distribution in the lower part of the beam. With this approach we derive a simple condition to optimise the beam length. Some examples referred to different fields are reported. In particular, the case of laterally loaded piles in Geotechnics is faced.

A Basic Study of Automatic Estimation Algorithm on the Rebar Length of Beam by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 보 철근길이 자동 산장 기초 연구)

  • Widjaja, Daniel Darma;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.167-168
    • /
    • 2023
  • Construction of reinforced concrete structures required massive amounts of concrete and steel rebar. The current procedure to estimate the quantity of rebar requires tedious and time-consuming manual labor. Consequently, this circumstance made the engineers vulnerable to error and mistake, which led to the rebar waste. No system that is capable of automatically calculating rebar length has yet been developed Thus, this study proposes a preliminary investigation of automatic rebar length estimation of beam element by using BIM-based shape codes drawn in Revit. Beam is chosen due to its complexity in the rebar arrangement. In addition, the development of this study could assist engineers on the construction site and effectively contribute to the minimization of rebar waste in the future.

  • PDF

Cyclic testing of steel column-tree moment connections with various beam splice lengths

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keunyeong;Kim, Kang-Seok
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.221-231
    • /
    • 2014
  • The purpose of this study was to evaluate the cyclic behavior of steel column-tree moment connections used in steel moment resisting frames. These connections are composed of shop-welded stub beam-to-column connection and field bolted beam-to-beam splice. In this study, the effects of beam splice length on the seismic performance of column-tree connections were experimentally investigated. The change of the beam splice location alters the bending moment and shear force at the splice, and this may affect the seismic performance of column-tree connections. Three full-scale test specimens of column-tree connections with the splice lengths of 900 mm, 1,100 mm, and 1,300 mm were fabricated and tested. The splice lengths were roughly 1/6, 1/7, 1/8 of the beam span length of 7,500 mm, respectively. The test results showed that all the specimens successfully developed ductile behavior without brittle fracture until 5% radians story drift angle. The maximum moment resisting capacity of the specimens showed little differences. The specimen with the splice length of 1,300 mm showed better bolt slip resistance than the other specimens due to the smallest bending moment at the beam splice.

Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.403-414
    • /
    • 2018
  • In this paper, the lateral-torsional buckling of axially-transversally functionally graded tapered beam is investigated. The structure cross-section is assumed to be symmetric I-section, and it is continuously laterally supported by torsional springs through the length. In addition, the height of cross-section varies linearly throughout the length of structure. The proposed formulation is obtained for the case that the elastic and shear modulus change as a power function along the beam length and section height. This structure carries two concentrated moments at the ends. In this study, the lateral displacement and twisting angle relation of the beam are defined by sinusoidal series. After establishing the eigenvalue equation of unknown constants, the beam critical bending moment is found. To validate the accuracy and correctness of results, several numerical examples are solved.

Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam (U-노치 및 균열을 갖는 보의 응력집중계수 및 응력확대계수)

  • Seo, Bo Seong;Lee, Kwang Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.513-523
    • /
    • 2016
  • The stress concentration factors and stress intensity factors for a simple beam and a cantilever are analyzed by using finite element method and phtoelasticity. Using the analyzed results, the estimated graphs on stress concentration factors and stress intensity factors are obtained. To analyze stress concentration factors of notch, the dimensionless notch length H(height of specimen)/h=1.1~2 and dimensionless gap space r(radius at the notch tip)/h=0.1~0.5 are used. where h=H-c and c is the notch length. As the notch gap length increases and the gap decreases, the stress concentration factors increase. Stress concentration factors of a simple beam are greater than those of a cantilever beam. However, actually, the maximum stress values under a load, a notch length and a gap occur more greatly in the cantilever beam than in the simple beam. To analyze stress intensity factors, the normalized crack length a(crack length)/H=0.2~0.5 is used. As the length of the crack increases, the normalized stress intensity factors increase. The stress intensity factors under a constant load and a crack length occur more greatly in the cantilever beam than in the simple beam.