• Title/Summary/Keyword: beam forming

Search Result 352, Processing Time 0.025 seconds

Effect of Electrode Formation Process using E-beam Evaporation on Crystalline Silicon Solar Cell (E-Beam evaporation을 이용한 전극 형성 공정이 결정질 실리콘 태양전지에 미치는 영향 분석)

  • Choi, Dongjin;Park, Se Jin;Shin, Seung Hyun;Lee, Changhyun;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • Most high-efficiency n-type silicon solar cells are based on the high quality surface passivation and ohmic contact between the emitter and the metal. Currently, various metalization methods such as screen printing using metal paste and physical vapor deposition are being used in forming electrodes of n-type silicon solar cell. In this paper, we analyzed the degradation factors induced by the front electrode formation process using e-beam evaporation of double passivation structure of p-type emitter and $Al_2O_3/SiN_x$ for high efficiency solar cell using n-type bulk silicon. In order to confirm the cause of the degradation, the passivation characteristics of each electrode region were determined through a quasi-steady-state photo-conductance (QSSPC).

Hot Stamping Simulations and Experiments for CTBA Tubular Beams (CTBA Tubular Beam의 열간 성형해석 및 실험)

  • Suh, C.H.;Kim, W.S.;Sung, J.H.;Park, J.K.;Kim, Y.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • For an accurate analysis of hot stamping, a coupled simulation with different aspects of the process(i.e. mechanical, thermal, and phase transformation) is needed. However, coupled simulations are time consuming and costly. Therefore, the current study proposes a simplified method focused on the forming for the hot stamping simulation of a coupled torsion beam axle (CTBA) tubular beam. In this simplified method, non-isothermal conditions were assumed and only conduction was considered, since it represents the majority of the heat transfer during hot stamping. In addition, temperature and strain rate effects were also included. Moreover, an isothermal simulation was conducted and compared with a non-isothermal simulation. Finally, the simulations were verified by experiments. In conclusion, the proposed method is shown to be effective for the development of tube-type parts, and it effectively predicts the deformation of the tubular beam during hot stamping.

Measurements of Developed Patterns by Direct writing of Electron Beam on Different Materials underneath PMMA

  • June, Won-Chae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • The developed patterns by direct writing of electron beam are measured by AFM, FESEM and optical profiler of WYKO NT3300. From different measurement methods, the measured linewidths of the patterns are shown a little bit wider than designed pattern size due to electrons scattering effect during direct writing of electron beam. The optimized conditions of these experiments are suggested and explained for the forming of structures below 0.1 ㎛ dimension size. Because of electron scattering effects from the different under layers such as Si, Si$_3$N$_4$ and aluminum, the developed pattern size is also influenced by the accelerated energy of electrons, dose, resist and soft and hard bake conditions in PMMA. The distributions of electron beam and calculations of backscattering coefficient are demonstrated by Monte Carlo simulation. From the measured results, the developed linewidth of PMMA/Al /silicon is shown a little bit wider than that of PMMA/Si$_3$N$_4$/silicon structure due to the backscattering effects.

Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes

  • Chaobing Yan;Tong Zhang;Ting Zheng;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.459-474
    • /
    • 2024
  • Classical and first-order nonlocal beam theory are employed in this study to assess the thermal buckling performance of a small-scale conical, cylindrical beam. The beam is constructed from functionally graded (FG) porosity-dependent material and operates under the thermal conditions of the environment. Imperfections within the non-uniform beam vary along both the radius and length direction, with continuous changes in thickness throughout its length. The resulting structure is functionally graded in both radial and axial directions, forming a bi-directional configuration. Utilizing the energy method, governing equations are derived to analyze the thermal stability and buckling characteristics of a nanobeam across different beam theories. Subsequently, the extracted partial differential equations (PDE) are numerically solved using the generalized differential quadratic method (GDQM), providing a comprehensive exploration of the thermal behavior of the system. The detailed discussion of the produced results is based on various applied effective parameters, with a focus on the potential application of nanotubes in enhancing sports bikes performance.

A Smart Antenna Test-bed Utilizing TMS320C30 in Smart Antenna System (TMS320C30을 이용한 스마트 안테나 시스템의 Test-bed 구현)

  • 김종욱;권세용;안성수;최승원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.523-533
    • /
    • 2000
  • In this paper, we present the hardware implementation of a smart antenna test-bed for a real -time performance analysis of the beam-forming algorithm operating in a wide-band CDMA environments of the WLL(Wireless Local Loop) standard. The test-bed introduced in this paper includes an external PC and signal generating module as well as the beam-forming module in order to perform, analyze, and evaluate the performance of the proposed smart antenna system. In the beam-forming module, the optimal weight vector is provided by the modified CGM algorithm. The computed weight vector is transferred back to the external PC for the performance analysis based on the off-line processing. From our analysis obtained in the hardware of the test-bed, it is concluded that the proposed smart antenna system for the WLL system is appropriate for enhancing the communication quality and capacity tremendously at the cell-site of the CDMA environment.

  • PDF

Performance Analysis of Beamforming Satellite System Applying Circular Array Antenna (원형 형상 배열 안테나를 적용한 위성 빔형성 시스템 성능 분석)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.845-852
    • /
    • 2019
  • The main goal of Signal Intelligence (SIGNT) based on a satellite is to collect valid and accurate data without the topographical constraints, but, due to the characteristics of the satellite communication, the collected signals are greatly vulnerable to the influence of interference and jamming signals because their power are very low. Therefore, the high performance techniques of estimating the angle of arrivals (AOAs) of the collected signals and suppressing interference signals are required for collecting various signals on the ground employing the satellite. In addition, the high quality of the transmission beam-forming technique is required for accurately transmitting the collected information to a ground control center. In this paper, we present a beam-forming satellite system based on a circular array antenna, considering the above techniques, and evaluate and analysis the performance of the presented beam-forming system through the computer simulation. The circular array antenna structure is expected to effectively employ for the SIGINT system based on a satellite, because it is suitable to be installed in the satellite.

Development of a Closed-die Design with Backpressure to Forge Rotating Scrolls (압축기용 구동스크롤의 밀폐형 배압 금형 개발)

  • Kim, Y.B.;Jung, K.H.;Lee, S.;Kim, E.;Lee, J.;Choi, D.S.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.183-188
    • /
    • 2013
  • Scroll compressors are widely used in air conditioning systems and in automobiles due to their low pressure loss, minimal vibrations, and light-weight. Open-die forging with back pressure is used to forge the rotating scroll, and it requires special care since the forging die can be severely damaged at the fixed end of the spiral cavity similar to a fracture of a cantilever beam. To overcome the inevitable weakness of the forging die due to such damage, an innovative design is necessary. In this study, structural analysis using the finite element method was conducted to determine the reason for the fracture of the forging die. A novel design to avoid stress concentrations and vertical deflection, causing serious damage to the die, is suggested.

A Hadamard Matrix Feed Network for a Dual-Beam Forming Array Antenna (두 개의 빔 형성 안테나를 위한 Hadamard 행렬 급전 장치)

  • Kim, Jae-Hee;Jo, Gyu-Young;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.927-932
    • /
    • 2008
  • We propose a novel $4{\times}4$ Hadamard matrix feed network for a $4{\times}1$ array antenna to form a dual beam. If each element of the array is excited following the elements in a row of the Hadamard matrix, a two-lobed antenna beam can be obtained. The angle between the two lobes can be controlled. The Hadamard matrix feed network consists of four $90^{\circ}$ hybrids, a crossover and four $90^{\circ}$ phase shifters. The array, including the Hadamard matrix feed network, was fabricated on a microstip structure. The measured beam directions of the two lobes are $0^{\circ}$, ${\pm}15^{\circ}$, ${\pm}33^{\circ}$, ${\pm}45^{\circ}$ depending on the choice of the input port of the feed network.

Beam Forming Study and Optimum Antenna Location Selection for Wideband Conformal Array Antenna (광대역 컨포멀 배열 안테나를 위한 빔 형성 연구 및 최적 소자 위치 선정)

  • Jung, Sang-Hoon;Lee, Kang-In;Nam, Sang-Wook;Chung, Young-Seek;Yoon, Young-Joong;Ryu, Hong-Kyun;Jung, Hyun-Kyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.138-146
    • /
    • 2016
  • This paper proposes an optimum beam forming of conformal array antenna by using LSM(Least Squares Method) and GA(Genetic Algorithm). The weights which approximate conformal array antenna beam pattern to linear array antenna beam pattern have been evaluated by applying LSM. Also, the optimum locations of conformal array antenna which form wideband optimum beam pattern have been obtained by using GA. The proposed method is applied to a problem of Bezier platform array antenna for a verification purpose.