• Title/Summary/Keyword: beam analogy method

Search Result 27, Processing Time 0.02 seconds

Elastic Critical Load and Effective Length Factors of Continuous Compression Member by Beam Analogy Method

  • Lee, Soo-Gon;Kim, Soon-Chul
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • The critical load of a continuous compression member was determined by the beam-analogy method. The proposed method utilizes the stress-analysis results of the analogous continuous beam, where imaginary concentrated lateral load changing its direction is applied at each midspan. The proposed method gives a lower bound error of critical load and can predict the span that buckles first. The effective length factors for braced frame columns can be easily determined by the present method, but result in the upper bound errors in all cases, which can lead to a conservative structural design.

  • PDF

An Analysis of Cylindrical Tank of Elastic Foundation by Transfer Matrix and Stiffness Matrix (전달행렬과 강성행렬에 의한 탄성지반상의 원형탱크해석)

  • 남문희;하대환;이관희;장홍득
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.193-200
    • /
    • 1997
  • Even though there are many analysis methods of circular tanks on elastic foundation, the finite element method is widely used for that purpose. But the finite element method requires a number of memory spaces, computation time to solve large stiffness equations. In this study many the simplified methods(Analogy of Beam on Elastic Foundation, Foundation Stiffness Matrix, Finite Element Method and Transfer Matrix Method) are applied to analyze a circular tank on elastic foundation. By the given analysis methods, BEF analogy and foundation matrix method, the circular tank was transformed into the skeletonized frame structure. The frame structure was divided into several finite elements. The stiffness matrix of a finite element is related with the transfer matrix of the element. Thus, the transfer matrix of each finite element utilized the transfer matrix method to simplify the analysis of the tank. There were no significant difference in the results of two methods, the finite element method and the transfer matrix method. The transfer method applied to a circular tank on elastic foundation resulted in four simultaneous equations to solve completely.

  • PDF

An Analysis of Hemisphere-cylindrical Shell Structure by Transfer Matrix Method (전달행렬법에 의한 반구 원통형 쉘구조의 해석)

  • 김용희;이윤영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.115-125
    • /
    • 2003
  • Shell structures are widely used in a variety of engineering application, and mathematical solution of shell structures are available only for a few special cases. The solution of shell structure is more complicated when it has such condition as winkler foundation, other problems. In this study many simplified methods (analogy of beam on elastic foudation, finite element method and transfer matrix method) are applied to analyze a hemisphere-cylindrical shell structures on elastic foundation. And the transfer matrix method is extensively used for the structural analysis because of its merit in the theoretical backgroud and applicability. Therefore, this paper presents the analysis of hemisphere-cylindrical shell structure base on the transfer matrix method. The technique is attractive for implementation on a numerical solution by means of a computer program coded in FORTRAN language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method.

A Study on the Design Automation of R/C Beam Using Analogy Evolutionary Procedure (유사 점진적 최적화 기법에 의한 철근콘크리트 구조물의 설계자동화에 관한 연구)

  • 엄대호;이정재;윤성수;김한중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.219-224
    • /
    • 1999
  • In this study New design automation method of R/C structure based on the finite element method and the analogy evolution ary procedure was developed . This system is the efficient tool to support Reinforcement Arrangement of R/C structure. The anology evolutionary procecure is similar to the evolutionary procedure proposed by Xie and Steven.

  • PDF

An Investigation into the Mode Superposition Method for the Foreced Transverse Vibration Analysis of Structures subject to the Timoshenko Beam Analogy (기준진동형중첩법(基準振動型重疊法)에 의한 Timoshenko보 유추(類推) 구조체(構造體)의 강제횡진동해석(强制橫振動解析))

  • K.C.,Kim;Y.I.,Park;H.M.,Kim;Y.J.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.1
    • /
    • pp.21-27
    • /
    • 1983
  • The mode superposition method(MSM) for the forced transverse vibration analysis of structures subject to Timoshenko beam analogy, which had originally been developed by Ormondroyd and McGoldrick, is reviewed to formulate it in more general form taking account of rotary inertia, dampings in separate terms of internal and external ones, and simultaneous action of exciting forces and moments. To investigate some general features of the method in practical utilizations, resonant maximum amplitudes of 4 high speed ships under concentrated sinusoidal excitation at the stern are calculated by both MSM and the finite difference method(FDM). For the FDM the hulls are discretized into 40 equal segments, and in utilization of MSM contributions of the first six modes are summed up to obtain responses up to the six-nodes resonant mode. The numerical results show that MSM gives slightly higher values, $4{\sim}10%$, than those by FDM. Since there is always uncertainty in the damping estimation of actual systems, influences of the damping magnitude on resonant amplitudes and a practical method to estimate modal damping coefficients are discussed.

  • PDF

Generalized curved beam on elastic foundation solved by transfer matrix method

  • Arici, Marcello;Granata, Michele Fabio
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.279-295
    • /
    • 2011
  • A solution of space curved bars with generalized Winkler soil found by means of Transfer Matrix Method is presented. Distributed, concentrated loads and imposed strains are applied to the beam as well as rigid or elastic boundaries are considered at the ends. The proposed approach gives the analytical and numerical exact solution for circular beams and rings, loaded in the plane or perpendicular to it. A well-approximated solution can be found for general space curved bars with complex geometry. Elastic foundation is characterized by six parameters of stiffness in different directions: three for rectilinear springs and three for rotational springs. The beam has axial, shear, bending and torsional stiffness. Numerical examples are given in order to solve practical cases of straight and curved foundations. The presented method can be applied to a wide range of problems, including the study of tanks, shells and complex foundation systems. The particular case of box girder distortion can also be studied through the beam on elastic foundation (BEF) analogy.

Natural Vibrations of Rectangular Stiffened Plates with Inner Cutouts (유공 직사각형 보강판의 진동해석)

  • K.C.,Kim;S.Y.,Han;J.H.,Jung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.35-42
    • /
    • 1987
  • For the analysis of natural vibrations of a rectangular stiffened plate with inner cutouts, an application of the Rayleigh-Ritz method is investigated. In construction of the trial function for the Rayleigh quotient, only the outer boundary conditions are satisfied with combination of Euler beam functions. As to the modeling of stiffened plates for the energy calculations, a lumping stiffener-effects method and the orthotropic plate analogy are considered for the purpose of comparison. Some numerical results obtained by the Rayleigh-Ritz method are compared with results by experiments and the finite element method. The following are major conclusions; (1) With the lumping stiffener-effects modeling the Rayleigh-Ritz method gives good results of both natural frequencies and mode shapes. The orthotropic plate analogy in cases of regularly stiffened plates is of restrictive use i.e. acceptable for a small cutout. (2) The natural frequency of a stiffened plate with inner cutouts between stiffeners is higher than that of without cutouts and increase as the hole area ratio increases as long as there are no discontinuous stiffeners due to the cutout.

  • PDF

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

The use of eccentric beam elements in the analysis of slab-on-girder bridges

  • Chan, Tommy H.T.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.85-102
    • /
    • 1999
  • With the advent of computer, the finite element method has become a most powerful numerical method for structural analysis. However, bridge designers are reluctant to use it in their designs because of its complex nature and its being time consuming in the preparation of the input data and analyzing the results. This paper describes the development of a computer based finite element model using the idea of eccentric beam elements for the analysis of slab-on-girder bridges. The proposed method is supported by a laboratory test using a reinforced concrete bridge model. Other bridge analytical schemes are also introduced and compared with the proposed method. The main aim of the comparison is to prove the effectiveness of the shell and eccentric beam modelling in the studies of lateral load distribution of slab-on-girder bridges. It is concluded that the proposed finite element method gives a closer to real idealization and its developed computer program, SHECAN, is also very simple to use. It is highly recommended to use it as an analytical tool for the design of slab-on-girder bridges.