• 제목/요약/키워드: bayesian updating

검색결과 68건 처리시간 0.028초

그리드지도의 방향정보 이용한 형상지도형성 (Feature Map Construction using Orientation Information in a Grid Map)

  • 송도성;강승균;임종환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1496-1499
    • /
    • 2004
  • The paper persents an efficient method of extracting line segment in a grid map. The grid map is composed of 2-D grids that have both the occupancy and orientation probabilities based on the simplified Bayesian updating model. The probabilities and orientations of cells in the grid map are continuously updated while the robot explorers to their values. The line segments are, then, extracted from the clusters using Hough transform methods. The eng points of a line segment are evaluated from the cells in each cluster, which is simple and efficient comparing to existing methods. The proposed methods are illustrated by sets of experiments in an indoor environment.

  • PDF

Particle filter for model updating and reliability estimation of existing structures

  • Yoshida, Ikumasa;Akiyama, Mitsuyoshi
    • Smart Structures and Systems
    • /
    • 제11권1호
    • /
    • pp.103-122
    • /
    • 2013
  • It is essential to update the model with reflecting observation or inspection data for reliability estimation of existing structures. Authors proposed updated reliability analysis by using Particle Filter. We discuss how to apply the proposed method through numerical examples on reinforced concrete structures after verification of the method with hypothetical linear Gaussian problem. Reinforced concrete structures in a marine environment deteriorate with time due to chloride-induced corrosion of reinforcing bars. In the case of existing structures, it is essential to monitor the current condition such as chloride-induced corrosion and to reflect it to rational maintenance with consideration of the uncertainty. In this context, updated reliability estimation of a structure provides useful information for the rational decision. Accuracy estimation is also one of the important issues when Monte Carlo approach such as Particle Filter is adopted. Especially Particle Filter approach has a problem known as degeneracy. Effective sample size is introduced to predict the covariance of variance of limit state exceeding probabilities calculated by Particle Filter. Its validity is shown by the numerical experiments.

초음파 센서을 이용한 자율 이동 로봇의 써튼티 그리드 형성 (Sonar-Based Certainty Grids for Autonomous Mobile Robots)

  • 임종환;조동우
    • 대한전기학회논문지
    • /
    • 제39권4호
    • /
    • pp.386-392
    • /
    • 1990
  • This paper discribes a sonar-based certainty grid, the probabilistic representation of the uncertain and incomplete sensor knowledge, for autonomous mobile robot navigation. We use sonar sensor range data to build a map of the robot's surroundings. This range data provides information about the location of the objects which may exist in front of the sensor. From this information, we can compute the probability of being occupied and that of being empty for each cell. In this paper, a new method using Bayesian formula is introduced, which enables us to overcome some difficulties of the Ad-Hoc formula that has been the only way of updating the grids. This new formula can be applied to other kinds of sensors as well as sonar sensor. The validity of this formula in the real world is verified through simulation and experiment. This paper also shows that a wide angle sensor such as sonar sensor can be used effectively to identify the empty area, and the simultaneous use of multiple sensors and fusion in a certainty grid can improve the quality of the map.

  • PDF

Noise Removal for Improvement of Occupancy-grid Map

  • Kim, Young-Geun;Choi, Chang-Min;Kim, Hak-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.138.4-138
    • /
    • 2001
  • The purpose of this research is to build a quality-improved occupancy grid map for path-planning of an autonomous mobile robot(AMR) based on the measurements from a single ultrasonic sensor, which are acquired when the autonomous mobile robot explores unknown indoor environment. The AMR navigates in the unknown space by following the wall and gathers the range data using the ultrasonic sensor, from which the occupancy grid map is constructed by associating the range data with occupancy certainties. In order to increase the quality of the map we modify the Bayesian probability updating rule, reject non-systematic measurement errors and correct the predictable error of the AMR itself. These procedures are implemented and tested using an AMR, and primary results are presented in this paper.

  • PDF

Bayes정리를 이용한 신뢰도 자료 평가용 전산코드 개발 및 응용 (A Computer Code Development for Updating Reliability Data Using Bayes' Theorem and Its Application)

  • Won-Guk Hwang;Kun Joong Yoo
    • Nuclear Engineering and Technology
    • /
    • 제15권1호
    • /
    • pp.41-49
    • /
    • 1983
  • 특정 원자력발전소 안전성 계통의 신뢰도 분석을 위한 자료평가의 목적으로 전산코드를 개발하였으며 그 유용성을 입증하였다. 가압 경수로 보조급수 계통 신뢰도 분석을 위하여 개발된 전산코드를 이용하여 관련자료를 평가하였다. 이를 위하여 부품고장률의 선분포는 미국의 원자력안전성 연구보고서, 특정 발전소의 운전경험은 기 발간된 인허가자 사상보고서에서 얻었다. 분석결과 후분포는 대수정규분포 곡선에 잘 점철되며 분포의 오차인자들은 현저히 감소하는 것으로 나타났다.

  • PDF

Recent Advances in Structural Health Monitoring

  • Feng, Maria Q.
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.483-500
    • /
    • 2007
  • Emerging sensor-based structural health monitoring (SHM) technology can play an important role in inspecting and securing the safety of aging civil infrastructure, a worldwide problem. However, implementation of SHM in civil infrastructure faces a significant challenge due to the lack of suitable sensors and reliable methods for interpreting sensor data. This paper reviews recent efforts and advances made in addressing this challenge, with example sensor hardware and software developed in the author's research center. It is proposed to integrate real-time continuous monitoring using on structure sensors for global structural integrity evaluation with targeted NDE inspection for local damage assessment.

균열 검사 결과를 고려한 선체 잔류 피로 수명의 확률론적 예측 (Stochastic Remaining Fatigue Life Assessment Considering Crack Inspection Results)

  • 박명진;김유일
    • 대한조선학회논문집
    • /
    • 제57권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In general, an inspection schedule is established based on the long-term fatigue life during the design stage. However, in the design stage, it is difficult to clearly identify the uncertainty factors affecting long-term fatigue life. In this study, the probabilistic fatigue life assessment was conducted in accordance with the methodology of DNV-GL. Firstly, The initial crack distribution estimated through the initial crack propagation analysis was updated by reflecting the results of crack inspection. Secondly, the updated crack distribution was compared with the initial crack distribution, and the probability of failure was updated with the effect of crack inspection.

A novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges

  • Wen-Qiang Liu;En-Ze Rui;Lei Yuan;Si-Yi Chen;You-Liang Zheng;Yi-Qing Ni
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.393-407
    • /
    • 2023
  • To assess structural condition in a non-destructive manner, computer vision-based structural health monitoring (SHM) has become a focus. Compared to traditional contact-type sensors, the advantages of computer vision-based measurement systems include lower installation costs and broader measurement areas. In this study, we propose a novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges. First, a deep learning model FairMOT is introduced to track the regions of interest (ROIs) that include joints to enhance the automation performance compared with traditional target tracking algorithms. To calculate the displacement of the tracked ROIs accurately, a normalized cross-correlation method is adopted to fine-tune the offset, while the Harris corner matching is utilized to correct the vibration displacement errors caused by the non-parallel between the truss plane and the image plane. Then, based on the advantages of the stochastic damage locating vector (SDLV) and Bayesian inference-based stochastic model updating (BI-SMU), they are combined to achieve the coarse-to-fine localization of the truss bridge's damaged elements. Finally, the severity quantification of the damaged components is performed by the BI-SMU. The experiment results show that the proposed method can accurately recognize the vibration displacement and evaluate the structural damage.

Wireless sensor networks for permanent health monitoring of historic buildings

  • Zonta, Daniele;Wu, Huayong;Pozzi, Matteo;Zanon, Paolo;Ceriotti, Matteo;Mottola, Luca;Picco, Gian Pietro;Murphy, Amy L.;Guna, Stefan;Corra, Michele
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.595-618
    • /
    • 2010
  • This paper describes the application of a wireless sensor network to a 31 meter-tall medieval tower located in the city of Trento, Italy. The effort is motivated by preservation of the integrity of a set of frescoes decorating the room on the second floor, representing one of most important International Gothic artworks in Europe. The specific application demanded development of customized hardware and software. The wireless module selected as the core platform allows reliable wireless communication at low cost with a long service life. Sensors include accelerometers, deformation gauges, and thermometers. A multi-hop data collection protocol was applied in the software to improve the system's flexibility and scalability. The system has been operating since September 2008, and in recent months the data loss ratio was estimated as less than 0.01%. The data acquired so far are in agreement with the prediction resulting a priori from the 3-dimensional FEM. Based on these data a Bayesian updating procedure is employed to real-time estimate the probability of abnormal condition states. This first period of operation demonstrated the stability and reliability of the system, and its ability to recognize any possible occurrence of abnormal conditions that could jeopardize the integrity of the frescos.

Updating calibration of CIV-based single-epoch black hole mass estimators

  • Park, Daeseong;Barth, Aaron J.;Woo, Jong-Hak;Malkan, Matthew A.;Treu, Tommaso;Bennert, Vardha N.;Pancoast, Anna
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.61.1-61.1
    • /
    • 2016
  • Black hole (BH) mass is a fundamental quantity to understand BH growth, galaxy evolution, and connection between them. Thus, obtaining accurate and precise BH mass estimates over cosmic time is of paramount importance. The rest-frame UV CIV ${\lambda}1549$ broad emission line is commonly used for BH mass estimates in high-redshift AGNs (i.e., $2{\leq}z{\leq}5$) when single-epoch (SE) optical spectra are available. Achieving correct and accurate calibration for CIV-based SE BH mass estimators against the most reliable reverberation-mapping based BH mass estimates is thus practically important and still useful. By performing multi-component spectral decomposition analysis to obtained high-quality HST UV spectra for the updated sample of local reverberation-mapped AGNs including new HST STIS observations, CIV emission line widths and continuum luminosities are consistently measured. Using a Bayesian hierarchical model with MCMC sampling based on Hamiltonian Monte Carlo algorithm (Stan NUTS), we provide the most consistent and accurate calibration of CIV-based BH mass estimators for the three line width characterizations, i.e., full width at half maximum (FWHM), line dispersion (${\sigma}_{line}$), and mean absolute deviation (MAD), in the extended BH mass dynamic range of log $M_{BH}/M_{\odot}=6.5-9.1$.

  • PDF