• Title/Summary/Keyword: bayesian predictive model

Search Result 77, Processing Time 0.021 seconds

Estimation and Forecasting of Dynamic Effects of Price Increase on Sales Using Panel Data (패널자료를 이용한 가격인상에 따른 판매량의 동적변화 추정 및 예측)

  • Park Sung-Ho;Jun Duk-Bin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.157-167
    • /
    • 2006
  • Estimating the effects of price increase on a company's sales is important task faced by managers. If consumer has prior information on price increase or expects it, there would be stockpiling and subsequent drops in sales. In addition, consumer can suppress demand in the short run. These factors make the sales dynamic and unstable. In this paper we develop a time series model to evaluate the sales patterns with stockpiling and short-term suppression of demand and also propose a forecasting procedure. For estimation, we use panel data and extend the model to Bayesian hierarchical structure. By borrowing strength across cross-sectional units, this estimation scheme gives more robust and reasonable result than one from the individual estimation. Furthermore, the proposed scheme yields improved predictive power in the forecasting of hold-out sample periods.

Forecasting Accidents by Transforming Event Trees into Influence disgrams

  • Yang, Hee-Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.1
    • /
    • pp.72-75
    • /
    • 2006
  • Event trees are widely used graphical tool to denote the accident inintiation and escalation to more severe accident. But they have some drawbacks in that they do not have efficient way of updating model parameters and also they can not contain the information about dependency or independency among model parameters. A tool that can cure such drawbacks is an influence diagram. We introduce influence diagrams and explain how to update model parameters and obtain predictive distributions. We show that an event tree can be converted to a statistically equivalent influence diagram, and bayesian prediction can be made more effectively through the use of influence diagrams.

Development of salinity simulation using a hierarchical bayesian ARX model (계층적 베이지안 ARX 모형을 활용한 염분모의기법 개발)

  • Kim, Hojun;Shin, Choong Hun;Kim, Tae-Woong;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.481-491
    • /
    • 2020
  • The development of agricultural land at Saemangeum has required a significant increase in agricultural water use. It has been well acknowledged that salinity plays a critical role in the farming system. Therefore, a systematic study in salinity is necessary to better manage agricultural water. This study aims to develop a stochastic salinity simulation model that simultaneously simulates salinities obtained from different layers. More specifically, this study proposed a two-stage Autoregressive Exgeneous (ARX) model within a hierarchical Bayesian modeling framework. We derived posterior distributions of model parameters and further used them to obtain the predictive posterior distribution for salinities at three different layers. Here, the BIC values are used and compared to determine the optimal model from a set of candidate models. A detailed discussion of the model is provided.

Grid-based Gaussian process models for longitudinal genetic data

  • Chung, Wonil
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.65-83
    • /
    • 2022
  • Although various statistical methods have been developed to map time-dependent genetic factors, most identified genetic variants can explain only a small portion of the estimated genetic variation in longitudinal traits. Gene-gene and gene-time/environment interactions are known to be important putative sources of the missing heritability. However, mapping epistatic gene-gene interactions is extremely difficult due to the very large parameter spaces for models containing such interactions. In this paper, we develop a Gaussian process (GP) based nonparametric Bayesian variable selection method for longitudinal data. It maps multiple genetic markers without restricting to pairwise interactions. Rather than modeling each main and interaction term explicitly, the GP model measures the importance of each marker, regardless of whether it is mostly due to a main effect or some interaction effect(s), via an unspecified function. To improve the flexibility of the GP model, we propose a novel grid-based method for the within-subject dependence structure. The proposed method can accurately approximate complex covariance structures. The dimension of the covariance matrix depends only on the number of fixed grid points although each subject may have different numbers of measurements at different time points. The deviance information criterion (DIC) and the Bayesian predictive information criterion (BPIC) are proposed for selecting an optimal number of grid points. To efficiently draw posterior samples, we combine a hybrid Monte Carlo method with a partially collapsed Gibbs (PCG) sampler. We apply the proposed GP model to a mouse dataset on age-related body weight.

Bayesian Inferences for Software Reliability Models Based on Beta-Mixture Mean Value Functions

  • Nam, Seung-Min;Kim, Ki-Woong;Cho, Sin-Sup;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.5
    • /
    • pp.835-843
    • /
    • 2008
  • In this paper, we investigate a Bayesian inference for software reliability models based on mean value functions which take the form of the mixture of beta distribution functions. The posterior simulation via the Markov chain Monte Carlo approach is used to produce estimates of posterior properties. Its applicability is illustrated with two real data sets. We compute the predictive distribution and the marginal likelihood of various models to compare the performance of them. The model comparison results show that the model based on the beta-mixture performs better than other models.

Developing a Bayesian Network Model for Real-time Project Risk Management (실시간 프로젝트 위험관리를 위한 베이지안 네트워크 모형의 개발)

  • Kim, Jee-Young;Ahn, Sun-Eung
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.119-127
    • /
    • 2011
  • Most companies have been increasing temporary work projects to maximize the usage of their resources. They also have been developing the effective techniques for analyzing and managing the state of the projects. In order to monitor the state of a project in real-time and predict the project's future state more accurately, this paper suggests the Bayesian Network (BN) as a tool for discovering the causes of project risk and presenting the failure probability of the project. The proposed BN modeling method with consideration of the Earned Value Management (EVM) method shows how to induce the predictive and conditional probability of the risk occurrence in the future. The advantages of the suggested model are (1) that the cause of a project risk can be easily figured out via the BN, (2) that the future value of the project can be sufficiently increased by updating relevant components of the project, and (3) that more credible prediction can be made in the similar and future situation by using the data obtained in current analysis. A numerical example is also given.

Prediction of extreme rainfall with a generalized extreme value distribution (일반화 극단 분포를 이용한 강우량 예측)

  • Sung, Yong Kyu;Sohn, Joong K.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.857-865
    • /
    • 2013
  • Extreme rainfall causes heavy losses in human life and properties. Hence many works have been done to predict extreme rainfall by using extreme value distributions. In this study, we use a generalized extreme value distribution to derive the posterior predictive density with hierarchical Bayesian approach based on the data of Seoul area from 1973 to 2010. It becomes clear that the probability of the extreme rainfall is increasing for last 20 years in Seoul area and the model proposed works relatively well for both point prediction and predictive interval approach.

Learning Predictive Models of Memory Landmarks based on Attributed Bayesian Networks Using Mobile Context Log (모바일 컨텍스트 로그를 사용한 속성별 베이지안 네트워크 기반의 랜드마크 예측 모델 학습)

  • Lee, Byung-Gil;Lim, Sung-Soo;Cho, Sung-Bae
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.4
    • /
    • pp.535-554
    • /
    • 2009
  • Information collected on mobile devices might be utilized to support user's memory, but it is difficult to effectively retrieve them because of the enormous amount of information. In order to organize information as an episodic approach that mimics human memory for the effective search, it is required to detect important event like landmarks. For providing new services with users, in this paper, we propose the prediction model to find landmarks automatically from various context log information based on attributed Bayesian networks. The data are divided into daily and weekly ones, and are categorized into attributes according to the source, to learn the Bayesian networks for the improvement of landmark prediction. The experiments on the Nokia log data showed that the Bayesian method outperforms SVMs, and the proposed attributed Bayesian networks are superior to the Bayesian networks modelled daily and weekly.

  • PDF

Power consumption prediction model based on artificial neural networks for seawater source heat pump system in recirculating aquaculture system fish farm (순환여과식 양식장 해수 열원 히트펌프 시스템의 전력 소비량 예측을 위한 인공 신경망 모델)

  • Hyeon-Seok JEONG;Jong-Hyeok RYU;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.87-99
    • /
    • 2024
  • This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.

Bayesian Model for the Classification of GPCR Agonists and Antagonists

  • Choi, In-Hee;Kim, Han-Jo;Jung, Ji-Hoon;Nam, Ky-Youb;Yoo, Sung-Eun;Kang, Nam-Sook;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2163-2169
    • /
    • 2010
  • G-protein coupled receptors (GPCRs) are involved in a wide variety of physiological processes and are known to be targets for nearly 50% of drugs. The various functions of GPCRs are affected by their cognate ligands which are mainly classified as agonists and antagonists. The purpose of this study is to develop a Bayesian classification model, that can predict a compound as either human GPCR agonist or antagonist. Total 6627 compounds experimentally determined as either GPCR agonists or antagonists covering all the classes of GPCRs were gathered to comprise the dataset. This model distinguishes GPCR agonists from GPCR antagonists by using chemical fingerprint, FCFP_6. The model revealed distinctive structural characteristics between agonistic and antagonistic compounds: in general, 1) GPCR agonists were flexible and had aliphatic amines, and 2) GPCR antagonists had planar groups and aromatic amines. This model showed very good discriminative ability in general, with pretty good discriminant statistics for the training set (accuracy: 90.1%) and a good predictive ability for the test set (accuracy: 89.2%). Also, receiver operating characteristic (ROC) plot showed the area under the curve (AUC) to be 0.957, and Matthew's Correlation Coefficient (MCC) value was 0.803. The quality of our model suggests that it could aid to classify the compounds as either GPCR agonists or antagonists, especially in the early stages of the drug discovery process.