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Abstract

In this paper, we investigate a Bayesian inference for software reliability models based on mean value func-
tions which take the form of the mixture of beta distribution functions. The posterior simulation via the
Markov chain Monte Carlo approach is used to produce estimates of posterior properties. Its applicability
is illustrated with two real data sets. We compute the predictive distribution and the marginal likelihood of
various models to compare the performance of them. The model comparison results show that the model

based on the beta-mixture performs better than other models.
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1. Introduction

As the importance of computers is highly appreciated, software, one of the main components of
computers, not only plays an important role but becomes more complicated. As a consequence, the
errors inside software which are not detected can do serious harm. Theoretically, it is possible to
make software error-free, but finding software faults is difficult as well as expensive.

The evaluation of software reliability is essential to produce software of good quality, quickly and
efficiently. For example, with a good software reliability model, programmers can determine when
to release their software package more easily and rationally.

Many statistical models have been developed to measure software reliability and utilized to estimate
the failure intensity of software and predict the quality of software. Jelinski and Moranda (1972)
model is the first model to be widely used. It assumes that the failure rate of the interfailure times
is proportional to the number of errors remaining in the software code. Goel and Okumoto (1979)
model is based on a nonhomogeneous Poisson process. It assumes that the expected number of
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failures in the interval is proportional to the product of the expected number of undetected failures
and the length of the interval. The approach that uses a nonhomogeneous Poisson process for
modeling the number of failures has been quite popular in recent years. Recent remarkable models
are Kuo and Yang’s (1996) general order statistics model and the model by Basu and Ebrahimi
(2003). The general order statistics model assumes that the total number of failures is N and the
observed epochs of failures are the first n order statistics taken from N 4.i.d. observations with
distribution supported in R*. Basu and Ebrahimi (2003) propose Bayesian software reliability
models based on martingale processes.They assume that the current failure rate is simply equal to
the previous failure rate on average.

This paper is organized as follows. Section 2 introduces the beta-mixture model and its motivation.
The Bayesian inferences are also developed. We illustrate real data analysis in two different cases
in Section 3. Comparisons are also made with existing well-known software reliability models.

2. Beta-Mixture Model and Bayesian Inferences

Let N(t) be the number of failures of the software observed during time (0,¢]. Usually, N(t) is
modelled by a nonhomogeneous Poisson process with the mean value function m(t) = E[N(t)] and
the intensity function u(t) which is the derivative of m(t). The probability density function of N (%)
is given as

P(N(t) =n) = %e-m“), n=0,1,2--. (2.1)

Nonhomogeneous Poisson processes(NHPP) can be classified into two classes according to the lim-
iting behavior of m(t). The processes with Jim, m(t) < oo and Jim m(t) = oo are called NHPP-I
and NHPP-II, respectively. Members of NHPP-I are studied by Goel and Okumoto (1979), Goel
(1983) and Ohba et al. (1982) and NHPP-II by Musa and Okumoto (1984), Duane (1964) and Cox
and Lewis (1966). In this paper, we deal with the mean value function which can belong to either
NHPP-I or NHPP-II according to the selection of the distribution function.

Since the mean value function is strictly increasing, it can be modelled by a distribution function;
see Mallick and Gelfand (1994). A mixture model provides a dense class of distribution functions
which relies on standard distributions as functional bases and is used to approximate the true
distribution function as follows:

F(z) >~ F(z) =) wFi(z]6:),

=1

where L is the number of mixands and w; > 0 and Zle wi = 1. As argued by Diaconis and
Ylvisaker (1985), an unknown distribution function can be modelled by a mixture of beta distribu-
tion functions.

Let B(u; ¢, d) be the beta distribution function with parameters ¢ and d evaluated at . Kim et al.
(2006) propose the mean value function based on the beta-mixture

L
m(t) = Gt szB{Fo(t); ol,o(L+1- l)} , (2.2)
=1

where Fyy denotes a centering distribution function and G~! is the inverse function of a distribution
function G which may be indexed by unknown parameters or given constants A = (A1, Az,..., ),
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usually p = 1 or 2. The functions Fo and G can be specified by users. Note that if G~ is upper
bounded, then m(t) is NHPP-I, otherwise NHPP-II. The prior information about the data may be
helpful in choosing Fp and G and in our experience, the uniform distribution is sufficient for many
cases.

There are two types of failure data in software reliability models, interval-domain data and time-
domain data. Interval-domain data, also called grouped data or error count data, are composed of
the number of failures n; during a fixed time interval (0, ¢;],i=1,2,...,mand 0 < t; < -+ < tm
and the joint probability density function is given as

()
:0) = —ma(tm)} ] , 2.
f(n; 0) = exp { — ma( )}izl e —niy)! (2.3)
where ng = 0, to = 0 and me(ti—1, t:) = me(t;) — me(ti—1). Time-domain data, also called

interfailure data or failure times data, consist of ordered epochs 0 < t; < - - - < t,,,, sometimes, with
a terminal time T and the corresponding joint probability density function is written as

F(t; 0) = exp { ~ mo(tm)} [ ] mo(ts), (2.4)

i=1
where mo(tm) is replaced by me(T) for the time truncated model.

Kim et al. (2006) sketch out the EM-algorithm for estimating the parameters and apply it to the
error count data of Tohma et al. (1991). In this paper, we present the Bayesian inference using
Gibbs sampling which provides an easy implementation for the inferences of the parameters. Let
D be the observed data and let 7(6) be a joint prior density of §. Then, the implementation of
Bayesian inferences is based on the posterior density of §, (6| D) « f(D; 6)w(8). For the selection
of L and the model comparison, a criterion such as the predictive distribution and the Bayes factor
can be used.

3. Applications

3.1. Error count model

Software failures data based on 111 observations was reported by Tohma et al. (1991) to test
the error count model. The program consists of about 200 modules and the modules have, on
average, 1000 lines of a high-level computer language. For these data, Fy and G were assumed to
be uniform(0,115) and uniform(0, \), respectively. We may assume either the mixture weight to
be random or the parameters of the beta densities to be random. Given L, it is mathematically
simpler to work with the mixture weight; see Gelfand and Mallick (1995). For that reason, we fix
the beta density parameters and assume that mixture weights are random. The parameter o = 1
is fixed and the number of mixands L = 3, 4 and 5 are considered. Then, the corresponding mean
value function is mg(t) = AA,(t), where A, (t) = Zle wiB{Fo(t); I, L+ 1 — 1} and in the case of
L =3,
Au(t) = w1 [1={1 = Fo()}?] + w2 F3(t) {3 — 2Fa(t)} + F5 ().

We assume that A and w are independent and
m(A) ~ Gamma(1l, 0.001), m(w) ~ Dirichlet(1,...,1).

Note that the prior for X is the diffuse prior and the Dirichlet prior for w is the vague prior.
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Table 3.1. Posterior summaries of parameters

A w
L—3 Mean 482.07 (0.98,0.01,0.01)
S.D. 21.82 (0.01,0.01,0.01)
-4 Mean 482.47 (0.77,0.21,0.01, 0.01)
S.D. 21.96 (0.06,0.06,0.01,0.01)
L=5 Mean 482.70 (0.42,0.54,0.02,0.01,0.01)
S.D. 21.86 (0.06,0.06,0.01,0.01,0.01)

500

S8
<
Q
8 4
&
=
o
g -
N
Proposed(L=3)
- - Proposed(L=4)
-~ - Proposed(L=5)
(=4
8 -
o
T T T T T T
o] 20 40 60 80 100
Time t

Figure 3.1. Cumulative number of failure times and the estimated mean value functions

Let n; be the number of failures in the time interval (t;—1, ti], 2 = 1,...,m and Bu.(ti-1, t:) =
Au(ti) — Aw(ti—1). Then, the full posterior density is given as

m(w, A| D) oc AZ =1 {H Bu(ti_1, t:)™ } exp { — Mo (tm) }r(w)m(N)

i=1

and the conditional posterior densities for the Gibbs algorithm are

7 (A |w, D) = Gamma (Z ni+1, A, (tm) + 0.001) ,

=1

m(w| A\, D) {H B (ti_1, ti)"f} exp{—AAu(tm)}-

To remove the effect of the initial values and reduce correlations among Gibbs samples, we used
the following method: For each initial value for w(9 cases), we iterate 35,000 times and drop the
first 5,000 samples and chose every tenth iteration so that samples of size 3,000 are obtained. We
monitor the convergence of the Gibbs samplers using the Gelman and Rubin (1992) method that
uses the analysis of variance technique and all estimates of interest are acceptable in our settings.
Table 3.1 summaries the estimated posterior means and standard deviation of A and w and Figure
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Figure 3.2. Cumulative number of failure times and the estimated mean value functions

3.1 shows the cumulative number of failures of the testing data and the estimated mean value
function via the MCMC algorithm.

The predictive interval for the number of future failures is used to verify the model adequacy. The
conditional predictive density for future failures n;y; given D; = (n1,...,n;) is defined as

p(niia D) = [ ol 6, Dy(8] Do

|

. . ni41
- / Anies %nt*—‘)——— exp{—ABu(t:, tis1)}(0 | Di)db. (3.1)
1!

The predictive probability p(n;+1| D;) can be approximated by Monte Carlo integration. We found
no remarkable difference among the approximated values of p(niy1 | D;) for L = 3, 4 and 5. Figure
3.2 shows 95% predictive intervals for n;+1, ¢ = 20,...,111, when L = 3. We see that the predictive
interval covers most of the observed n; and conclude that the model is adequate.

3.2. Failure times model

Jelinski and Moranda (1972) introduced data which are based on the trouble report for one of the
larger modules of the Naval Tactical Data System(NTDS). The first 26 failures were found during
the production phase and the remaining 5 failures were detected during the testing phase; see
Goel and Okumoto (1979) and Mazzuchi and Soyer (1988). We assume that Fp is uniform(0, 550)
and G is uniform(0, A). The number of mixands L = 3, 4 and 5 and ¢ = 1 are considered. Let
Dy, = {t1,...,tm} be observed epochs of failures. Then, the likelihood function of this model is

L(w| D) = {_H AB::(ti)} exp { — M (tm)},
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Table 3.2. Posterior summaries of parameters

A w
s Mean 32.12 (0.79,0.10,0.11)
o S.D. 5.69 {(0.10,0.09, 0.07)
Mean 32.20 (0.69,0.13,0.08,0.10)
L=4
S.D. 5.72 (0.11,0.11, 0.06,0.06)
L=s Mean 32.20 (0.59,0.16,0.09,0.07,0.09)
= S.D. 5.67 (0.13,0.13,0.07, 0.06, 0.06)
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Figure 3.3. Cumulative number of failure times and the estimated mean value functions

where B (t) = d/dt Y., wiB{Fo(t); I, L + 1 —1}. Assuming X and w are independent and
m(A) ~ Gamma(l, 0.001) and =(w) ~ Dirichlet(l,...,1),
the conditional posterior densities are written as

w(A|w, Drn) = Gamma(m + 1, A, (im) + 0.001);

7(w| A, Dm) « {H B:;(t,-)} exp{— Ay (tm)}.
i=1
Table 3.2 summarizes estimated posterior means and standard deviations for L = 3, 4 and 5 and
Figure 3.3 shows N(t) and estimated mean value functions. Since the data are obtained at two
different phases, the change of the parameters in the mean value function may happen at that time.
The NTDS data have been analyzed by many authors including Jelinski and Moranda (1972), Goel
and Okumoto (1979), Kuo and Yang (1995, 1996), Achcar et al. (1997) and Basu and Ebrahimi
(2003). We compare the performance of other models with beta-mixture models. We use the first 26
failures as used in the most of the literature. For the failure times model, the conditional predictive
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Table 3.3. Values for c(1)

Models c(l)
Gen.Gamma Order Statistics Model 9.576 x 10~50
Weibull Order Statistics Model 9.874 x 10~58
Gamma Order Statistics Model 1.325 x 10~3%
Exponential Order Statistics Model 3.587 x 10—57
Lognormal Order Statistics Model 1.130 x 1051
SA Basu et al. (2003) 3.007 x 10~39
EA Basu et al. (2003) 1.052 x 10739
EV Basu et al. (2003) 2.021 x 10~40
Beta mixture (L = 3) 4.413 x 10797
Beta mixture (L = 4) 7.153 x 10737
Beta mixture (L = 5) 1.694 x 1036

Table 3.4. Log-marginal likelihood in the NTDS data

Models marginal likelihood
Jelinski-Moranda/Goel-Okumoto —88.98
Littlewood-Verall (1973) —93.13
Homogeneous Poisson process —92.47
Musa-Okumoto -96.87
‘Weibull order statistic —97.02
Singpurwalla-Soyer (1985) —91.74
SA Basu et al. (2003) —84.54
EA Basu et al. (2003) —85.19
EV Basu et al. (2003) —90.94
Beta mixture (L = 3) —84.99
Beta mixture (L = 4) —84.65
Beta mixture (L = 5) —83.51

density can be computed by
P(Tiar | D) = [ p(Tisal6, DIx(0] Di)ao

= /)\B:,(ﬂ+1)exp [=A{AL(Tis1) — AL (#:) Y w(6| D;)do.

Table 3.3 summarizes the values of ¢(l) = [17"7]" p(ti+1 | D:), where [ indexes the models. The results
except the beta-mixture models are referred to Achcar et al. (1997) and Basu and Ebrahimi (2003).
The model with maximum ¢(l) is preferred. We observe that beta-mixture models are superior to
others for the NTDS data.

As an another comparison criterion, we could consider the marginal likelihood. In general, the
Bayes factor is the Bayesian model comparison criterion. The Bayes factor is defined as the ratio
of marginal likelihood of the two models

p(t| M)

Big = ==,

p(t| Ma)
where p(t|M;) = [p(t|6, M;)dn(6| M;) is the marginal likelihood, p(t|8, M;) is the likelihood
and p(@| M;) is the prior distribution under model M;. We use the Harmonic mean estimator to
estimate the marginal likelihood; see Basu and Ebrahimi (2003).



842 Seungmin Nam, Kiwoong Kim, Sinsup Cho, In-Kwon Yeo

Table 3.4 summarizes the estimates of log-marginal likelihoods. The model having the higher
marginal likelihood is preferred. We observe that beta-mixture models dominate other models.
The values in Table 3.4 except beta-mixture models are referred to Basu and Ebrahimi (2003).

4. Conclusion

Software reliability models are used to monitor the faults of software in the testing phase. In this
paper, we propose a Bayesian approach to a software reliability model using the beta-mixture. Beta-
mixture model allows users to select Fy and G flexibly so that the mean value function can have
various shapes. To overcome the estimation problem with the density having multiple parameters,
we apply Markov chain Monte Carlo technique. We show that the proposed models are applicable
to two real data sets of different types. The predictive approaches are used for the model selection.
In addition, the proposed model is compared with the existing software reliability models via the
marginal likelihood and the predictive distribution.
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