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G-protein coupled receptors (GPCRs) are involved in a wide variety of physiological processes and are known to be 
targets for nearly 50% of drugs. The various functions of GPCRs are affected by their cognate ligands which are 
mainly classified as agonists and antagonists. The purpose of this study is to develop a Bayesian classification model, 
that can predict a compound as either human GPCR agonist or antagonist. Total 6627 compounds experimentally deter-
mined as either GPCR agonists or antagonists covering all the classes of GPCRs were gathered to comprise the data-
set. This model distinguishes GPCR agonists from GPCR antagonists by using chemical fingerprint, FCFP_6. The 
model revealed distinctive structural characteristics between agonistic and antagonistic compounds: in general, 1) 
GPCR agonists were flexible and had aliphatic amines, and 2) GPCR antagonists had planar groups and aromatic 
amines. This model showed very good discriminative ability in general, with pretty good discriminant statistics for the 
training set (accuracy: 90.1%) and a good predictive ability for the test set (accuracy: 89.2%). Also, receiver operat-
ing characteristic (ROC) plot showed the area under the curve (AUC) to be 0.957, and Matthew’s Correlation Coeffi-
cient (MCC) value was 0.803. The quality of our model suggests that it could aid to classify the compounds as either 
GPCR agonists or antagonists, especially in the early stages of the drug discovery process. 
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Introduction

Since G protein-coupled receptors (GPCRs) constitute the 
largest family of eukaryotic signal transduction proteins that 
communicate across the membrane and, as such, are associated 
with a multitude of diseases that make members of these families 
important pharmacological targets, half of all modern drug tar-
gets are GPCRs.1,2

In addition to their widespread appearance and highly com-
plex function in nature, GPCRs are modulated by a plethora of 
diverse endogenous and exogenous ligand.3 In fact, several li-
gands for GPCRs are found among the worldwide top-100- 
selling pharmaceutical products.1 It is believed that a receptor 
molecule exits in a conformational equilibrium between active 
and inactive biophysical state.4 In general, GPCR ligands can 
be divided into three classes: (1) agonists, which binds selec-
tively to active receptor conformations to cause a biological 
response; (2) inverse agonists, which decrease the proportion 
of active receptor states, and thereby reduce constitutive (basal) 
receptor activity; and (3) antagonists, which don’t alter basal 
response by not disturbing the resting equilibrium as they bind 
with equal affinity to both active and inactive receptor confor-
mations.4,5

A machine-learning method helps to overcome the difficulty, 
the cost and time-consuming problems in the discovery of novel 
chemical entities in the pharmaceutical industry. This kind of 
method takes as input a set of objects (the training set) that 
aCurrent address: Tuberculosis Research Section, Laboratory of Cli-
nical Infectious Diseases, National Institute of Allergy and Infectious 
Diseases, National Institutes of Health, Bethesda, MD 20892, USA. 
bMember of Translational Research Center for Protein Function Con-
trol, Korea.

have previously been determined to be either active or inactive. 
These training-set molecules are then analyzed to develop a 
decision rule that can be used to classify new molecules (the 
test set) into one of the two classes.6 Various machine-learning 
techniques have already been suggested to be used to increase 
the chances of identifying novel GPCR ligands; for example, 
back-propagation neural networks with BCUT descriptors,7 a 
combination of structure-based and property-based parameters,8 
pattern recognition techniques,9 similarity searching and dyna-
mic compound mapping,10 or self-organizing neural networks 
with RDF descriptors.11 Besides a wide variety of these available 
methods, Bayesian concepts and methodology has existed for 
many years to analyze structure activity data or to predict chemi-
cal properties; however, its popularity as a tool for substruc-
tural analysis within drug discovery and structure-activity analy-
sis is somewhat recent.6,12 

Bayesian modeling is ideal for substructural analysis due to 
following reasons. First, it is fast and it scales linearly with 
large data sets with respect to the number of molecules. This 
is different from methods that try to fit the data where such 
methods nearly always scale greater than linearly. Second, it 
works for a few as well as many ‘good’ (for e.g., active) ex-
amples because the method is not a fitting method. Thus, it is 
also less affected by the "curse of dimensionality" when large 
numbers of descriptors are used. Third, the Bayesian model 
weights features by assigning greater significance to charac-
teristics that appear to distinguish good samples from baseline 
samples. This is quite different from other clustering methods 
which uses static distance functions, such as the Tanimoto 
Distance between two fingerprints, where all bits are given 
equal weight. In such methods, a small number of bits represent-
ing features important for activity may be lost among a larger 
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Figure 1. The PCA results of GPCR antagonists (A) and agonists (B) from GLIDA (red dots) database, Prous Science Integrity (blue dots) and 
Life Science Informatics Bonn website (yellow dots) in the form of a 3D scatter. The comparison is based on the first three principal com-
ponents calculated from the molecular descriptors of SciTegic Pipeline Pilot and PreADMET. 

number of bits representing less important features.12 Fourth, 
it doesn’t need tuning parameters beyond the selection of the 
input descriptors from which to learn.12, 13 Last but not least, 
the model can display fragments that are active ('good') as well 
as inactive ('bad') within the dataset. Therefore, Bayesian model-
ing provides an ideal way to rapidly analyze data with a view 
to library development and compound prioritization.12 Also, 
the fact that it can model broad classes of compounds and 
multiple modes of action can be represented in a single model,13 
is beneficial for GPCR-related research since there are so many 
GPCR ligands belonging to diverse classes and acting in various 
modes. Some successful uses of Bayesian models with large 
datasets have been for the classification of kinase inhibitors,12 
the prioritization of antitubercular agents,14 and the prioritiza-
tion of compound libraries toward natural product-likeness.15

Here we will report our investigation on a modified naïve 
Bayesian statistics implemented in SciTegic Pipeline Pilot,16 
and its application in the generation of generalized model that 
classifies GPCR agonists and antagonists. We will build our 
model with a whole slew of GPCR binding ligands that would 
cover wide range of subgroups in each class of GPCRs. For 
most of published works so far, only representative subgroups 
belonging to either class A and/or class B GPCR ligands were 
used. The main objective of these published works was either 
to classify GPCR and non-GPCR binding ligands9 or to dis-
tinguish target- and family- selective GPCR antagonists.10 Our 
model will be able to distinguish the mode of action of GPCR 
binding ligands, whether they are agonistic or antagonistic. 

Experimental

Data sets. Experimentally determined GPCR agonists and 
antagonists were taken from GLIDA17 and Prous Science In-
tegrity databases.18 GLIDA is a public GPCR-related Chemical 

Genomics database that is primarily focused on the integration 
of information between GPCRs and their ligands. It provides 
interaction data between GPCRs and their ligands, along with 
chemical information on the ligands, as well as biological 
information regarding GPCRs. 17 Prous Science Integrity enables 
researchers to manage and correlate chemistry and genomics 
data with experimental and clinical pharmacology results and 
with a knowledge base of disease entities.18 Only the human 
full agonists and antagonists were retrieved but both partial and 
inverse agonists were retrieved from these databases. We have 
selected diverse ligands from many subgroups in order not to 
bias our dataset toward well-known GPCR class A ligands. In 
terms of biological diversity, our collections of compounds are 
known to belong the following GPCR classes: class A Rhodop-
sin like, class B Secretin like, class C Metabotropic glutamate/ 
pheromone, and putative/unclassified Class A Orphan GPCRs. 
All peptides, ions, free radicals as well as dyes were removed 
in order to select small organic molecules only. Thus, 7345 
compounds and 641 compounds from GLIDA (4742 agonists 
and 2603 antagonists) and Integrity Prous Science Integrity 
(192 agonists and 449 antagonists) databases, respectively, were 
collected. Additional 267 GPCR antagonists of biogenic amine 
receptors were obtained from the Life Science Informatics 
Bonn website (subgroups: dopamine, serotonin, and adrenergic 
GPCRs).10

Next, the chemical diversity was assessed and possible out-
liers were identified by principal component analysis (PCA) 
conducted on calculable molecular properties termed as “prede-
fined set (ALogP, MW, No. of H donors, No. of H acceptors, 
No. of rotatable bonds, No. of atoms, No. of rings, No. of aro-
matic rings and No. of fragments)” in SciTegic Pipeline Pilot 
as well as molecular descriptors from PreADMET software, 
developed by BMDRC.19 The PreADMET program provides 
rapid and reliable data of drug-likeness and ADME properties. 
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Table 1. PCA loadings obtained for selected variables with three 
principal components

Descriptors
GPCR Agonists GPCR Antagonists

PC1 PC2 PC3 PC1 PC2 PC3

Constant ‒6.282 ‒0.999 ‒0.752 ‒7.466 0.557 0.783

ALogP 0.104 0.315 ‒0.263 0.141 ‒0.213 0.302

Molecular_ 
Weight 0.004 0.0002 ‒0.0005 0.005 0.0004 0.0003

Num_H_Donors 0.179 ‒0.318 0.004 0.111 0.418 ‒0.288

Num_H_ 
Acceptors 0.149 ‒0.209 0.102 0.168 0.184 ‒0.101

Num_ Rotatable 
Bonds 0.0976 ‒0.045 ‒0.138 0.088 0.0819 0.115

Num_Atoms 0.0576 0.008 ‒0.003 0.067 ‒0.0002 ‒0.0007

Num_Rings 0.234 0.305 0.507 0.213 ‒0.354 ‒0.398
Num_ Aromatic 

Rings 0.331 0.229 0.215 0.270 ‒0.328 ‒0.213
x

Table 2. Number of compounds used in training and test sets

Data set Training set Test set

    Agonist 1685 1632
    Antagonist 1683 1627

    Total 3368 3259

Table 3. Performance parameters, accuracy, sensitivity, specificity 
(in %), and MCC for two models corresponding to CYP3A4 training 
and test sets

Data 
Sets

Accuracy
(Predictability) % Sensitivity % Specificity % MCCa

Training 90.1% 
(3035/3368)

88.7% 
(1495/1685)

91.5% 
(1540/1683) 0.803

Test 89.2% 
(2906/3259)

85.3% 
(1392/1632)

93.1% 
(1514/1627) 0.786

a 
 )FNFP)(TNFP)(TNFN)(TPTP(

)FN(FPTN)TP(
++++

×−×=MCC

It can also calculate constitutional, electrostatic, physicochemi-
cal, geometrical and topological descriptors, which have been 
developed in response to need for rapid prediction of drug like-
liness and ADME/Toxicity data. Here, PCA gives three signi-
ficant PCs, which explains 87.2% of the variation in the data 
(54.1%, 21.7%, and 11.4%, respectively). The values of each 
molecular descriptor to respective PCs are shown in Table 1. 
The 3D scatter plot generated using Spotfire program20 shows 
the distribution of compounds over the three first components 
in Figure 1. Several compounds that were outliers were removed 
from the respective data sources which could attribute to in-
accurate classification by Bayesian model. Finally, we combined 
these sources and divided the data equally and randomly for 
training and test sets. The number of agonists and antagonists 
in both training and test sets are shown in Table 2.

Bayesian model development and validation. Laplacian mo-
dified Bayesian statistics available in SciTegic Pipeline Pilot 
(version 7.0)16 was used to develop predictive model. The model 
is generated by computing the specified descriptors and a two 
class Bayesian categorization model is built based on the mole-
cular descriptors calculated on the fly.13 Pipeline Pilot provides 
proprietary descriptors via following fragmentation scheme: 
each atom is represented by a string of extended connectivity 
values, calculated using a modified Morgan algorithm. There 
are two different circular substructure descriptors available: 
Extended Connectivity Fingerprints (ECFPs) and Functional 
Connectivity Fingerprints (FCFPs).21 The descriptor used in 
this study is FCFP_6.22 It is a 2D fingerprint where the atom 
types are abstracted to the role that the atom plays in the mole-
cule. The generation of an FCFP fingerprint for a molecule 
involves with the assignment of an atom code for the role of 
each heavy (non-hydrogen) atom in the molecule (HBA, HBD, 
positively ionized or positively ionizable, negatively ionized 
or negatively ionizable, aromatic, and halogen) and its neigh-
bors.13,22 The learning process generates a large set of Boo-
lean features from the input descriptors, then collects the fre-
quency of occurrence of each feature in the "good" subset and 
in all data samples. Weight is calculated for each feature using 
a Laplacian-adjusted probability estimate. The weights are sum-
med to provide a probability estimate, which is a relative pre-
dictor of the likelihood of that sample being from the "good" 
subset.12

Once a model is built, every molecule is given a prediction 
score based on the contributions from each constitutive feature. 
This enables the compounds to be ranked in order of their 
probability of having either GPCR agonistic or antagonistic 
activities. In addition, each compound can be classified as GPCR 
agonist or antagonist depending on whether its score is greater 
than (positive) or less than (negative) a predetermined classifica-
tion cut-off value (0), respectively. The test set compounds are 
subsequently used for prediction and an external validation 
purposes using the derived model.13 

Once all the samples had predictions, an enrichment plot 
was generated, and the percentage of true category members 
captured at a particular percentage cutoff. The enrichment result 
table (Supplementary Table 1) shows the percentage of samples 
that are in that particular category, the number of category mem-
bers, and the percentage of true members found. For example, 
in a column labeled "1%" would be the percentage of true cate-
gory members (e.g., actives) that were found in the top 1% of 
the list, when sorted by the model score.14 The percentile results 
table shows the cutoff needed to capture a particular percentage 
of the "good" samples (Supplementary Table 2). For each cutoff, 
it shows the estimated percentages of false positives and true 
negatives for the "non-good" samples. This table is designed 
to assist in picking the cutoff value that best balances the desire 
to capture as many "good" samples as possible, while keeping 
the number of false positives at a minimum. The rates shown 
in this table are estimates derived from the cross-validated data.16 
The category statistics table shows, for each category statistics 
derived from the cross-validated predictions of the model built 
for that category as applied to members of that category and 
non-members of that category (Supplementary Table 3). For 
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Figure 2. The performance of the model is depicted graphically by Re-
ceiver operating characteristic (ROC) plot. 
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Figure 3. The enrichment plot of the percentage of GPCR agonists 
(“good” compounds) found (Y-axis) against the percentage of com-
pounds screened (X-axis).

each group, the number of members/nonmembers (N) is given; 
the mean prediction for each subset (Mean); and the estimate 
standard deviation of the predictions for each subset (StdDev).16 

Results and Discussion

 The use of Bayesian statistics to model for the classifica-
tion of general (multiclasses) GPCR agonists or antagonists 
has been investigated. One of the goals of this study was to 
analyze GPCR agonist and antagonist relevant structures to 
classify GPCR agonist and antagonists. The second goal was 
to provide a GPCR agonist/antagonist likeness score to establish 
a prediction model for the probability of a molecule to be either 
GPCR agonist or antagonist.

The predictive abilities of this model were assessed by various 
statistics such as accuracy, sensitivity, specificity, and Matthew’s 
correlation coefficient (MCC) (Table 3). The model was able 
to correctly classify nearly 90% of the 3259 test set compounds 
(1392 out of 1632 GPCR agonists and 1514 out of 1627 GPCR 
antagonists), which is a fairly good prediction. In addition, 
Matthews Correlation Coefficient (MCC) values were nearly 
+1 in for both training and test sets where a coefficient of +1 
represents a perfect prediction.23, 24 In addition, the strength of 
our model is that it reflects diverse classes and subtypes of 
GPCRs whereas other published models were built usually 
with class A type ligands.

A major strength of Bayesian modeling is its ability to rank 
compounds according to their probability of being active. This 
ranking is important when prioritizing compounds for screening 
or for further development.13 Thus, the ranking of active com-
pounds in the ordered list of the test set is an indicator of the 
quality of the model conveniently visualized by the Receiver 
Operating Characteristic (ROC) plot (Figure 2) and the Enri-
chment curve (Figure 3). The enrichment curve plots the number 
of active compounds recovered versus the proportion of the 
database screened. The straight diagonal line shows how many 
active compounds would be recovered in a random, unbiased 
screening. If the samples are rank-ordered according to their 
likelihood of exhibiting activity and then screened, the active 
compounds should be found more rapidly than if they are 
screened at random and the plot appears as the curve shown.12 

It is important to validate that the process would build a 
useful model if it were given data “sufficiently similar” to the 
samples in the training set.22 This was done using leave-one- 
out cross-validation method. In this procedure, one sample was 
left out, and a model was built using the remaining samples; 
that model was used to predict the scores for the left-out sam-
ples. This was repeated until all samples had a prediction. The 
samples were then sorted by decreasing score, and the ROC 
plot was used to estimate the predictability of the modeling 
process. The ROC plot shows that a large number of true posi-
tives can be discovered with only a few false positives. A perfect 
model has the area under the curve (AUC) of 1.0; the ROC 
AUC score of our model was 0.957, which means, if given an 
agonist and an antagonist, and if one used the model score to 
guess which one the agonist was, one would be right 95.7% of 
the time.13 Both of these graphs demonstrate the high discri-
minating power of our Bayesian model generated for the predic-

tion of GPCR agonists and antagonists.
The model statistics show that our model has good enrichment 

rates (almost 90% of the "good" compounds occurred in the 
top 50% of the list) as well as percentile results (less than 50% 
cutoff value will lead to less than 10% false positives), while 
the category statistics indicate quite big separation between 
GPCR agonists and antagonists (Supplementary Table 3).

The representative GPCR agonistic and GPCR antagonis-
tic features derived from FCFP_6 descriptors from this model 
and its frequency associated with a good compound are shown 
in Table 4. All 47 and 43 features of GPCR agonists and antago-
nists, respectively, are shown in Supplementary Figure 1. A 
cumulative score of feature contributions to "GPCR agonist" 
likeness is computed. Scores must therefore be interpreted by 
likelihood.12 That is, if compounds A's Bayesian score is 90 
and compounds B's score is 70, a correct interpretation is that 
compound A is more likely to be an agonist than compound 
B.12 The normalized probability scores of the fingerprint features 
most closely associated with agonistic activity (G1-G20) range 
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Table 4. Scaffolds representing GPCR agonistic and antagonistic features from FCFP-6

GPCR agonistic features from FCFP-6 GPCR antagonistic features from FCFP-6

ID Feature Bayesian score ID Feature Bayesian score

G1
H
N

∗

OH

0.703 B1

*

∗ ∗ ∗

∗ ‒3.833

G4
N

N

∗

*

0.703 B3
*

∗

∗

∗

‒3.823

G7

O

N∗

∗

0.702 B4

*

N

N N

N

∗

∗

‒3.801

G8

OH

N
H

∗

*

0.702 B5

*

N

* *

N

∗

∗

‒3.801

G10
N

N

N

*

∗
0.701 B8

N

*

*
N

*

‒3.779

G13
N

N

N

∗

∗ 0.701 B9
N

N

∗

∗

∗

∗
∗

∗

‒3.779

G14

N

N∗

∗

∗

∗ 0.700 B10
N

∗

∗ ∗

∗

‒3.597

G17

OH

N
H

∗

∗∗

0.698 B20 HO O ∗

∗

∗

‒3.041

G18

N

∗

∗

0.698 B24 N

N

O ∗

∗

∗ ‒2.969

G19 Cl
OH

NH
*

0.698 B25 *

*

**

Cl

‒2.891
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Table 4. Continued

GPCR agonistic features from FCFP-6 GPCR antagonistic features from FCFP-6

ID Feature Bayesian score ID Feature Bayesian score

G21

N

∗

∗ 0.693 B29
N

∗ ∗

∗
‒2.864

G24

N

*

S∗ ∗

*

*

0.692 B31
N

O
∗

∗

∗

‒2.864

G28

*
HO

OH

∗
0.689 B33

*

S O

HN

∗

O

‒2.864

G39
N

*

*

HO

0.685 B35 S

N

*

*

∗
∗

∗

∗ ∗

‒2.836

G46 *

*

N
N

*

*

∗

0.680 B43
*

OO

O

∗

∗

‒2.807

G48
N

N

* *

*

∗

∗

*

0.678 B46 N

N

N

N

∗ ∗

∗

‒2.746

The stars in the sketches represent ‘any atom’.

(A)
G7

Cl

O

NH
N

  

(B)

G10

Cl

N

N
N

Figure 4. Several nonpeptide U-II agonists, with the GPCR agonistic 
features predicted by the model highlighted by a circle.

between +0.703 and +0.678. The model shows that FCFP_6 
features B1 and B20 (normalized probability score ranges bet-
ween ‒3.833 and ‒2.682) were associated with GPCR antagonis-
tic activity.

Generally speaking from these analyses, GPCR agonists are 
composed of flexible fragments such as chains and hydrophilic 
groups like either aliphatic amines or hydroxyl groups. These 
top ranking scaffolds reflected the common pharmacophoric 
features of various GPCR binding ligands. For example, non- 
peptide human urotensin-II agonists (Figure 4) share the follow-
ing common pharmacophoric features: (i) a central nitrogen-rich 
scaffold such as triazole core (G10, G13), and benzimidazole 
like core (G4), (ii) a protonable nitrogen atom at the extremity 
of an aliphatic side chain (G14), (iii) one aromatic ring con-
nected to the scaffold by linker groups of variable length (G1, 
G14, G19).25 

On the other hand, GPCR antagonists have planar structures 
usually composed of two or three rings and aromatic amines. 
A well known motif found in both GPCR and non-GPCR drugs 
is the biphenyl substructure. For example, this motif is found 

in potent and selective EP3 antagonists developed by Merck 
and dual NK1/NK2 antagonist developed by Novartis.3 This 
biphenyl fragment has been found within the top 10 antagonistic 
scaffolds such as B3 or B8. The common pharmacophoric gro-
ups of non-peptide human urotensin-II antagonists (Figure 5) 
are hydrogen-bond acceptor and donor, ionizable group (basic 
amine), and aromatic hydrophobic features.26 These groups 
were found within the top 20 antagonistic fingerprint features. 
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Figure 5. Several nonpeptide U-II antagonists, with the GPCR antago-
nistic features predicted by the model highlighted by a circle.

Among GPCR antagonistic features found from our analysis, 
fragments like sulfonamide group and benzodiazepine-like sca-
ffold are usually found in clinically used antagonists.3 

GPCRs are often the first ranking for medicinal chemists 
concerning the druggability of a target. The present study is a 
ligand-based retrospective analysis of the classification of GPCR 
agonistic as well as antagonistic activities using a Bayesian 
statistical approach. Model was built with thousands of struc-
turally diverse compounds which were experimentally deter-
mined as GPCR agonists and antagonists. This work demon-
strated how GPCR agonist or antagonist-like libraries can be 
generated for smart screening using this model. This model 
also allows identification of structural features that are asso-
ciated with GPCR activities. Scaffolds conferring GPCR acti-
vities were identified; GPCR agonists are composed of flexible 
fragments and aliphatic amines, whereas GPCR antagonists 
have planar structures and aromatic amines. The Bayesian mo-
del reached about 90% of accuracy for both the training and 
test sets indicating strong predictive quality of the model. Thus, 
the general performance of this method seems to be satis-
factory with significant activity enrichment.

Though many ligand-based methods allow for the retrieval 
of novel or alternative molecular scaffolds, the optimization 
of the initial hits is often considered challenging since ligand- 
based methods generally lack any information on how the po-
tential ligands might bind to the receptor binding site.27 To com-
pensate this issue, we are planning to classify these determined 
GPCR agonistic and antagonistic fragments to their corres-
ponding GPCR targets more in depth. This way structure- 
selectivity relationship of each GPCR class could be explored. 
Additional further works will be related to confirming the app-
licability of this technique to newly synthesized compounds 
once those biological assay results become available.

So far, drugs have still only been developed to affect a very 
small number of the GPCRs, and the potential for drug dis-
covery within this field is enormous.1 This Bayesian model 
could be applied to predict compounds in order to assist earlier 
identification of either GPCR agonist or antagonist during the 
preliminary step of drug discovery. This model could be applied 
to prioritize compounds for screening or to optimally select 
compounds from third-party data collections. Predicted scaffolds 
could be applied and provide information in chemical synthesis 
stage.
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