• Title/Summary/Keyword: bayesian decision

Search Result 207, Processing Time 0.027 seconds

Spammer Detection using Features based on User Relationships in Twitter (관계 기반 특징을 이용한 트위터 스패머 탐지)

  • Lee, Chansik;Kim, Juntae
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.785-791
    • /
    • 2014
  • Twitter is one of the most famous SNS(Social Network Service) in the world. Twitter spammer accounts that are created easily by E-mail authentication deliver harmful content to twitter users. This paper presents a spammer detection method that utilizes features based on the relationship between users in twitter. Relationship-based features include friends relationship that represents user preferences and type relationship that represents similarity between users. We compared the performance of the proposed method and conventional spammer detection method on a dataset with 3% to 30% spammer ratio, and the experimental results show that proposed method outperformed conventional method in Naive Bayesian Classification and Decision Tree Learning.

Uncertainty Improvement of Incomplete Decision System using Bayesian Conditional Information Entropy (베이지언 정보엔트로피에 의한 불완전 의사결정 시스템의 불확실성 향상)

  • Choi, Gyoo-Seok;Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.47-54
    • /
    • 2014
  • Based on the indiscernible relation of rough set, the inevitability of superposition and inconsistency of data makes the reduction of attributes very important in information system. Rough set has difficulty in the difference of attribute reduction between consistent and inconsistent information system. In this paper, we propose the new uncertainty measure and attribute reduction algorithm by Bayesian posterior probability for correlation analysis between condition and decision attributes. We compare the proposed method and the conditional information entropy to address the uncertainty of inconsistent information system. As the result, our method has more accuracy than conditional information entropy in dealing with uncertainty via mutual information of condition and decision attributes of information system.

Reference-Intrinstic Analysis for the Difference between Two Normal Means

  • Jang, Eun-Jin;Kim, Dal-Ho;Lee, Kyeong-Eun
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.11-21
    • /
    • 2007
  • In this paper, we consider a decision-theoretic oriented, objective Bayesian inference for the difference between two normal means with unknown com-mon variance. We derive the Bayesian reference criterion as well as the intrinsic estimator and the credible region which correspond to the intrinsic discrepancy loss and the reference prior. We illustrate our results using real data analysis as well as simulation study.

Reference-Intrinsic Analysis for the Ratio of Two Normal Variances

  • Jang, Eun-Jin;Kim, Dal-Ho;Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.219-228
    • /
    • 2007
  • In this paper, we consider a decision-theoretic oriented, objective Bayesian inference for the ratio of two normal variances. Specifically we derive the Bayesian reference criterion as well as the intrinsic estimator and the credible region which correspond to the intrinsic discrepancy loss and the reference prior. We illustrate our results using real data analysis and simulation study.

  • PDF

Communication Channel Equalization Using Adaptive Neural Net (적응 신경망을 이용한 통신 채널 등화)

  • 김정수;권용광;김민수;이대학;이상윤;김재공
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1037-1040
    • /
    • 1999
  • This paper investigates a RBF(Radial Basis Function) equalizer for channel equalization. RBF network has an identical structure to the optimal Bayesian symbol-decision equalizer solution. Therefore RBF can be employed to implement the Bayesian equalizer. Proposed algorithm of this paper makes channel states estimation to be unncessary, also makes center number which is needed indivisual channel to be minimum. Bayesian Equalizer has the theorical optimum performance. Proposed Equalizer performance is compared with this Baysian equalizer performance.

  • PDF

Water Resources Development Model by Using Bayesian Theory (베이지안 기법을 이용한 수자원개발 모델)

  • Kim, Jee-Hak;Bae, Young-Ju
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.1
    • /
    • pp.72-82
    • /
    • 1991
  • This study deals with the problem of water resources development by using bayesian theory. The purpose of this study is to develop the optimal decision model by applying bayesian theory which determine the optimal alternative in water resources development system. A relevant mathematical model to find an optimal solution formulated and then used in developing an efficient water resources that determine optimal alternative. A numerical example is solved to illustrate the algorithm developed.

  • PDF

Analysis and Optimization of Cooperative Spectrum Sensing with Noisy Decision Transmission

  • Liu, Quan;Gao, Jun;Guo, Yunwei;Liu, Siyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.649-664
    • /
    • 2011
  • Cooperative spectrum sensing (CSS) with decision fusion is considered as a key technology for tackling the challenges caused by fading/shadowing effects and noise uncertainty in spectrum sensing in cognitive radio. However, most existing solutions assume an error-free decision transmission, which is obviously not the case in realistic scenarios. This paper extends the general decision-fusion-based CSS scheme by considering the fading/shadowing effects and noise corruption in the common control channels. With this more practical model, the fusion centre first estimates the local decisions using a binary minimum error probability detector, and then combines them to get the final result. Theoretical analysis and simulation of this CSS scheme are performed over typical channels, which suggest some performance deterioration compared with the pure case that assumes an error-free decision transmission. Furthermore, the fusion strategy optimization in the proposed cooperation model is also investigated using the Bayesian criteria. The numerical results show that the total error rate of noisy CSS is higher than that of the pure case, and the optimal values of fusion parameter in the counting rule under both cases decrease as the local detection threshold increases.

Application of Quality Statistical Techniques Based on the Review and the Interpretation of Medical Decision Metrics (의학적 의사결정 지표의 고찰 및 해석에 기초한 품질통계기법의 적용)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.2
    • /
    • pp.243-253
    • /
    • 2013
  • This research paper introduces the application and implementation of medical decision metrics that classifies medical decision-making into four different metrics using statistical diagnostic tools, such as confusion matrix, normal distribution, Bayesian prediction and Receiver Operating Curve(ROC). In this study, the metrics are developed based on cross-section study, cohort study and case-control study done by systematic literature review and reformulated the structure of type I error, type II error, confidence level and power of detection. The study proposed implementation strategies for 10 quality improvement activities via 14 medical decision metrics which consider specificity and sensitivity in terms of ${\alpha}$ and ${\beta}$. Examples of ROC implication are depicted in this paper with a useful guidelines to implement a continuous quality improvement, not only in a variable acceptance sampling in Quality Control(QC) but also in a supplier grading score chart in Supplier Chain Management(SCM) quality. This research paper is the first to apply and implement medical decision-making tools as quality improvement activities. These proposed models will help quality practitioners to enhance the process and product quality level.

Optimal Bayesian MCMC based fire brigade non-suppression probability model considering uncertainty of parameters

  • Kim, Sunghyun;Lee, Sungsu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2941-2959
    • /
    • 2022
  • The fire brigade non-suppression probability model is a major factor that should be considered in evaluating fire-induced risk through fire probabilistic risk assessment (PRA), and also uncertainty is a critical consideration in support of risk-informed performance-based (RIPB) fire protection decision-making. This study developed an optimal integrated probabilistic fire brigade non-suppression model considering uncertainty of parameters based on the Bayesian Markov Chain Monte Carlo (MCMC) approach on electrical fire which is one of the most risk significant contributors. The result shows that the log-normal probability model with a location parameter (µ) of 2.063 and a scale parameter (σ) of 1.879 is best fitting to the actual fire experience data. It gives optimal model adequacy performance with Bayesian information criterion (BIC) of -1601.766, residual sum of squares (RSS) of 2.51E-04, and mean squared error (MSE) of 2.08E-06. This optimal log-normal model shows the better performance of the model adequacy than the exponential probability model suggested in the current fire PRA methodology, with a decrease of 17.3% in BIC, 85.3% in RSS, and 85.3% in MSE. The outcomes of this study are expected to contribute to the improvement and securement of fire PRA realism in the support of decision-making for RIPB fire protection programs.

Bayesian Theorem-based Prediction of Success in Building Commissioning

  • Park, Borinara
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.523-526
    • /
    • 2015
  • In recent years, building commissioning has often been part of a standard delivery practice in construction, particularly in the high-performance green building market, to ensure the building is designed and constructed per owner's requirements. Commissioning, therefore, intends to provide quality assurance that buildings perform as intended by the design and often helps achieve energy savings. Commissioning, however, is not as widely adopted as its potential benefits are perceived. Owners are still skeptical of the cost-effectiveness claims by energy management and commissioning professionals. One of the issues in the current commissioning practice is that not every project is guaranteed to benefit from the commissioning services. This, coupled with its added cost, the commissioning service is not acquired with great acceptance and confidence by building owners. To overcome this issue, this paper presents a unique methodology to enhance owner's predicting capability of the degree of success of commissioning service using the Bayesian theorem. The paper analyzes a situation where a future building owner wants to use a pre-commissioning in an attempt to refine the success rate of the future commissioned building performance. The author proposes the Bayesian theorem based framework to improve the current commissioning practice where building owners are not given accurate information how much successful their projects are going to be in terms of energy savings from the commissioning service. What should be provided to the building owners who consider their buildings to be commissioned is that they need some indicators how likely their projects benefit from the commissioning process. Based on this, the owners can make better informed decisions whether or not they acquire a commissioning service.

  • PDF