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Reference-Intrinstic Analysis for the Difference
between Two Normal Means

Eun Jin Jang? Dal Ho Kim? and Kyeong Eun Lee®

Abstract

In this paper, we consider a decision-theoretic oriented, objective Bayesian
inference for the difference between two normal means with unknown com-
mon variance. We derive the Bayesian reference criterion as well as the
intrinsic estimator and the credible region which correspond to the intrinsic
discrepancy loss and the reference prior. We illustrate our results using real
data analysis as well as simulation study.

Keywords: Intrinsic expected loss; Bayesian reference criterion; reference prior; intrinsic
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1. Introduction

The problem of making inferences about the difference of normal means has
been extensively discussed in the statistical literature. Specifically, we assume
the data z;;(¢ = 1,2;5 = 1,...,n;) are independent and normally distributed
with means u; and unknown common variance o2. As well known, the statistical
inferences about 6 = u; — ug are based on ¢ statistic

(1 —22) -0
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where s2 = [371 (215 — 1)® + 372, (w25 — T2)]/(n1 + ng — 2) is the pooled

variance.
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Recently Bernardo (1999) and Bernardo and Rueda (2002) introduced a
new model selection criterion, called the Bayesian Reference Criterion (BRC).
Bernardo (1999) takes a decision theoretic approach to developing an objective
Bayes solution to test for nested hypotheses. Furthermore, Bernardo and Juarez
(2003) addressed intrinsic point estimation and Bernardo (2005) defined intrinsic
credible region based on the information-theory based loss function as well as
reference prior from an objective Bayesian viewpoint. The procedures merge
the use of the reference algorithm (Berger and Bernardo, 1992; Bernardo, 1979)
to derive noninformative priors, with the intrinsic discrepancy (Bernardo and
Rueda, 2002; Bernardo and Judrez, 2003) as loss function to obtain an objective
answer for statistical problem.

The purpose of this article is to develop a decision-theoretic oriented, objective
Bayesian answer to the problems of sharp hypothesis testing and both point and
region estimation for the difference between two normal means with unknown
common variance.

The contents of the remaining paper are as follows. In Section 2, we describe
the reference-intrinsic methodology. Also we derive the Bayesian reference cri-
terion, the intrinsic estimator and the credible region for the difference between
two normal means with unknown common variance. Comparisons with alterna-
tive approaches are carried out in Section 3, using both real data and simulated
data. Some concluding remarks are given in Section 4.

2. Reference-Intrinsic Analysis

2.1. The Methodology

Suppose that available data = consist of a random sample = {z;,...,2,}
from the family M = {p(x|0, ),z € X,0 € ©,\ € A} where 8 is some vector of
interest and A is some vector of nuisance parameters.

The intrinsic discrepancy loss dg {5, (6,\)}, introduced by Bernardo and
Rueda (2002), is basically used to measure the “distance” between the probability
density p(x|0, A) and the family of probability densities M = {p(x|0,\), A € A},
defined as

513{67 (6,2} = inf 6{p(z|6, A)>p(m|’é’ X)}W
Aea
where 5{p(|8, A), p(z|6, X)} = min{k(8, X|8, X), k(6, |8, X)} and k(8, |8, X) =
Jx p(z|0, X) log{p(x|0, X)/p(x|0, A) }dzx, that is the Kullback-Leibler divergences.
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Computation of intrinsic loss functions in regular models may be simplified by

5210, (6,\)} = min{ inf k(8,X|0,\), inf (6, |9, ,\)} (2.1)

Ae XeA
In our problem, the directed divergence k(6, X, 5|0, A, o) is
(a:|0 A 02)
® p(alf, 52)
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As a function of (X, 72), the directed divergence k(a, by a6, A, o) is minimized
when (X, 52) takes the value (A4-{n1/(n1 + n2) }(8—0), 02 +{ninz/(n1 + n2)?}(6—
6)?). Thus by substituting in (2.2), the minimum directed divergence is

~\ 2
inf k(8 ,5)0,)\0) = "1;””210g[1+( e (0"9)}.

k0. %,510,A,0) = / (@]9, A, 0?) log (22)
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Similarly, the directed divergence k(6, A, a|§,X, o) is given by
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As a function of (}, 72), the directed divergence k(0, A, 010 \,5) is minimized
when (X, 52) takes the value (A+{n1/(n1 + n2)}(0 —8), 02). Thus by substituting
in (2.3), the minimum directed divergence is

~\ 2
. ~ o~ ny +ng nino 6—20
inf k(6,\cl0,)\0)= . .
XeR52>0 ( | ) 2 (m+mn)? ( Y )

Hence, using (2. 1) and the fact that, for all z > 0, log(1+2) < z, the intrinsic
discrepancy loss 5,1,-{9 (6,,0)} from using fas a proxy for 8 is

(5;1;{5,(0,/\,0)}=n1;n210g [1+ e (5_")}. (2.4)

(n1 + ng)? o
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2.2. The Bayesian Reference Criterion

The intrinsic discrepancy reference expected loss, or intrinsic expected loss,
defined as

d(8|z) = / / 5210, (6, \)}(8, Az)dAd6, (2.5)

where m(0, A|z) o« p(z|0, A\)7(0,X), and 7(68, A) is the joint reference prior when
6 is the quantity of interest.

The intrinsic statistic d(8o|x) is a measure of the evidence against the simpli-
fied model p(x|@ = 6o, A) provided by the data . The hypothesis Hy = {0 = 6o}
should be rejected if (and only if) the posterior expected loss is sufficiently large.
To decide whether or not the precise value 8y may be used as a proxy for the
unknown value of 8, the Bayesian reference criterion (BRC) might be used as
follows:

Reject Ho iff d(8o|z) = / / 52{80, (8, X)}7(0, A|z)dAd0 > d*.

The values of d* around 2.5 would imply a ratio of e*® ~ 12, providing mild
evidence against the null; while values around 5(e® ~ 150) can be regarded as
strong evidence against Hy; values of d* > 7.5(¢”® & 1800) can be safely used to
reject the null.

In our problem, the reference prior when 0 is the parameter of interest is given
by 7(, A, o) < o~1. Thus the reference posterior distribution of (8, ), o) is

(8, \,0|lx) < p(x|d, A o)m(8, A, o). (2.6)

Integrating out the nuisance parameters {\, o}, it leads to the marginal reference

posterior of 8
_ _ 1 1
m(0|z) = St(6|Z1 — T2, spy/ — + —,m1 +n2 — 2), (2.7)
n 9

which is the Student-t distribution with ny 4+ ng — 2 degrees of freedom and
location parameter Z; — %2, scale parameter sy\/(1/n1) + (1/n2). Moreover, the

marginal reference posterior density of the precision r = 02 is

m(rle) = Ga(r|(n + nz — 2)/2,5°/2),

2 _ ni . =.\2 no C_ ~=2)2 :
where s° = 371, (x1; — Z1)° + 3772, (%2; — Z2)*. Thus the posterior mean and
variance of the precision r are

n+ng—2 2(n1+n2 2)

E[r|z] = =2 , Var[r|z] = o (2.8)



Reference-Intrinstic Analysis for the Difference between Two Normal Means 15

Using the intrinsic discrepancy loss (2.4) and the reference posterior (2.6), the
intrinsic expected loss d(f|x) is given by

d(B|z) = /~ Z /_ Z /0 ” 52{0, (6, ), 0)}w(0, A, o|z)dodAdo (2.9)

~ 2
. c(n1 + 'I’Lg) 0 [® —(n1+n2) ning -6
== /_00/0 o log |1+ (m + )2 -

X exp [—535 {32 +anz ((Z1 — Z2) — 9)2}] dadf,

ny +ng

where constant c= 27 (M+72=3)/2gm+n2=2 [l no) /(g + ng)/{V/7 D{((ni4n2 — 2)
/2)}. Thus, it induced the decision rule, the Bayesian reference criterion (BRC):

Reject 0 =6 iff d(fo|z) > d*.

The above intrinsic expected loss (2.9) may be written in terms of the reference
posterior of 7,

~ oo 2
d(lz) = / AT g [1+n11n2]7r(n|w)d77, (2.10)

where 7 = (8 — 6)/{o\/(1/n1) + (1/ng)}. But n may be written as a + 3
where, as a function of § and o, 8 = {0 — (1 — Z2)}/{o/(1/n1) + (1/n2)}
has a standard normal reference posterior from the conditional reference pos-
terior of § given o, w(flo,x) = N(0|Z; — Z2,04/(1/n1) + (1/n2)), and a =
{(Z1 — Z2) — 0}/{o/(1/m1) + (1/nz)} is the constant. Hence, the conditional
posterior distribution of n? given ¢ is noncentral x? with one degree of freedom

and non centrality parameter a2,

m(n*lz, o) = x*(1°1,0%), o = 1@ _1i2) -19}2. (2.11)
0-2
(*7)

m
A simple asymptotic approximation to d(glx), which provides a direct measure
in a log-likelihood ratio scale of the expected loss associated to the use of 5, may
easily be obtained. Indeed, a variation of the delta method shows that, under
appropriate regularity conditions, the expectation of some function y = g(z) of a

random quantity r with mean y, and variance o2 may be approximated by

0.2 /"
Blo@)] ~ g i+ F L.

(2.12)



16 Eun Jin Jang, Dal Ho Kim and Kyeong Eun Lee

From the conditional posterior distribution of 52, the conditional posterior
mean of n? is 14+-a2, and its conditional posterior variance is 2+4a2. The posterior
expectation of log{1 + 7?/(n1 + n2)} required in (2.10) can be approximated by
using (2.12).

Theorem 2.1 The approximation of the intrinsic expected loss is

n1 + ng

d(0|z) ~ (1+t%)], (2.13)

log |1+

n1 + na

where t = {(Z1 — Z2) — 0}/{sp/(1/n1) + (1/n2)}.

Proof: From the posterior mean and variance of the precision r = ¢~

2 in

(2.8), the unconditional posterior mean of n? is
E(r’lx) = E[E(n*|z,r)|x]
{(.’1_21 —.’Z‘z) —0}2 o +ng—2

(1 1> 52
-+ —
ni ny

where ¢ = {(Z1 — %2) — 6}/{spv/(1/m1) + (1/m2)} and the unconditional posterior
variance of 7? is

=1+,

Var(n?|z) = Var[E(n?|r, x)|z] + E[Var(n?®|r, z)|z)
2t

= 2 + 4¢2 )
+ +n1+n2—2

Thus using (2.12), progressively cruder, the approximated posterior expecta-
tion is

~ ® ni+n 2
d(f|z) = / 1 5 2 Jog [1 + nlz— n2] m(n|xz)dn
—00

ny + ng

Q

log |1+
g|i n1 + no

9 (n1 +n2)(n1 +n2 — 1)(1 +2) + (ny +ng — 2)t4]
(n1+n2 — 1)(n1 +ng + 1+ t2)

ny + ng

Q

1
log |1 1+89)]|.
og{ +n1+n2( + )}
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By Taylor’s series expansion, simpler approximation is

'n1+’n2log 14 1
n1 + na

d(0|z) ~ (1+ t2)] ~ %(1 +12).

Both the intrinsic statistic (2.9) and its approximation (2.13) are represented
in Figure 2.1, calculated from simulated data with § = 0 and for several sam-
ple sizes of (n1,n3). We can see that for small (n;,ng), it is not possible to
reject almost any value of the parameter and that the criterion becomes more
discriminating as the sample size increases. Moreover, the approximated intrinsic
statistic (2.13) works well even for moderated sample sizes.

- Pl
N~

(20,30) (10,20}
g
o
=

Figure 2.1: The intrinsic statistic d(gl:n) for the difference between two normal
means (solid line) and its approximation (dashed line), fixing 6 = py — uz = 0.

2.3. The Intrinsic Estimation

Bayes estimates are those which minimize the expected posterior loss. The
intrinsic estimate is the Bayes estimate which corresponds to the intrinsic discrep-
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ancy loss and the reference posterior distribution. Introduced by Bernardo and
Juérez (2003), this is a completely general objective Bayesian estimator which is
invariant under reparametrization. The intrinsic estimate of 8

Oins(x) = argmin d(f|z)
fco

is that parameter value which minimizes the reference posterior expected intrinsic
loss (2.5).

Bayesian region estimation is typically based on posterior credible regions,
i.e., sets of @ values with pre-specified posterior probabilities. The p-credible
intrinsic region is the lowest posterior loss p-credible region which corresponds
to the intrinsic discrepancy loss and the reference prior. An intrinsic p-credible
region is a subset Ri"™ = Ri™(x, ©) on the parameter space such that,

/R‘ p(8lx)d6 = p, v 0; € R™ v 8; ¢ R™, d(6;|x) < d(8;]|x),
14

where d(61|az) is the intrinsic expected loss (2.5).

In our problem, the intrinsic expected loss d(a |z) only depends on ] through
{(z1 — T2) — 0}?, and increases with {(Z; — &) — 0} from (2.11); therefore, the
intrinsic estimator of 0 is

Oint(x) = argmin d(6]x)
6eR
= argmin{(Z; — Z3) — 0}
6eR
= X1 — T2.

Moreover, d(alaz) is symmetric around Z; — Z2 and, hence, all intrinsic credible
regions must be centered at Z; — Zy. Since the marginal reference posterior of 8
is the Student distribution given by (2.7), the intrinsic p-credible regions are just
the usual Student-t HPD p-credible intervals

int = = 1 1
Rp (x,R) = (Z1 — Z2) +tpni+na~28p/ — + —, (2.14)
n N9
where tp n, tn,—2 is the (p+1)/2 quantile of a standard Student-t with n; +ng—2
degrees of freedom.
It immediately follows from (2.14) that R{™ consist of the set of 8 values such

that {(Z1 — E2) — 5}/{sp\/(1/n1) + (1/n2)} belongs to a probability p centred
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interval of a standard Student-t with ny + ng — 2 degrees of freedom. But, as a
function of the data @, the sampling distribution of
Ha) = {(&1 - 22) = B/ (spy) = +
=1\21 2 D - e
is also a standard Student-t with ny + ng — 2 degrees of freedom. Hence, for all
sample sizes, the expected coverage under sampling of the p-credible intervals

is exactly p, and the intrinsic credible regions are exact frequentist confidence
intervals.

3. Numerical Analysis

3.1. Example

The data “Calcium and Blood Pressure Story” in DASL(lib.stat.cmu.edu/
DASL), which contains a subset of the data shown in Lyle et al. (1987), consist
of blood pressure measurements on a subgroup of 21 African-American subjects,
10 who have taken calcium supplements and 11 who have taken placebo. The
primary analysis variable is the blood pressure difference (“begin” minus “end”).
Summary statistics are as follows:

Group n Mean  StdDev
Calcium 10 5.0000 8.7433
Placebo 11 -0.2727 5.9007

Here, s, = 7.385 and ¢t = 1.634; the positive t-value suggests calcium is
beneficial for reducing blood pressure. The two-sided frequentist p-value is p =
0.1187.

The exact value of the expected intrinsic loss by numerical integration using
(2.9) is 1.5396 and its approximation using (2.13) is 1.6913. According to the BRC
using the threshold value d* = 2.5, we cannot reject the hypothesis Hy : § = 0,
so there is insufficient evidence to indicate that the change in blood pressure
between the treatment and placebo groups are different.

3.2. Simulation Study

In order to compare the performance under homogeneous repeated sampling
of the BRC with their frequentist counterparts, ten thousand simulations were
carried for several sample sizes (n1,n2). Table 3.1 summarises this comparison.
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The third and fourth columns (BRC and ¢-test) report the relative number of
times when the hypothesis § = 0 was rejected under each criterion, using the
threshold values of d* = 2.4207 for the BRC, and o = 0.05 for the t-test.

Table 3.1: Comparison of the behaviour under repeated sampling of the BRC

and t-test.

(7’11, n2)

0

BRC

t-test

(2,5)

0.7824
0.0403
0.7816

0.8175
0.0480
0.8186

(5,10)

0.9986
0.0388
0.9977

0.9990
0.0489
0.9985

(10,20)

1.0000
0.0408
1.0000

1.0000
0.0487
1.0000

(20,30)

1.0000
0.0438
1.0000

1.0000
0.0494
1.0000

From Table 3.1, we confirm that the frequentist p-value and the BRC p-value

are comparable and the power of both tests increases with sample size. Moreover,
under Hy, the BRC type-1 errors are 0.0403, 0.0388, 0.0408, 0.0438 for each sample
sizes, which are smaller than the corresponding frequentist type-1 errors.

Table 3.2: The mean value and standard deviation of the intrinsic estimators, the
coverage probability and expected length of the intrinsic 0.95-credible intervals

for several sample sizes (n1,n2).

Inrinsic Estimators  Coverage  Expected
(1, m2) Mean  StdDev Probability Length
(2,5) —0.0052 0.8281 0.9498 4.0909
(5,5) —0.0036  0.6295 0.9518 2.8275
(5,10) —0.0042 0.5450 0.9506 2.3233
(10,10) 0.0058  0.4460 0.9494 1.8546
(10,20) 0.0083  0.3887 0.9482 1.5717
(20,30) 0.0020 0.2898 0.9513 1.1549

To explore the performance of both intrinsic estimator and intrinsic credible

region, we simulated ten thousand data sets for several sample sizes (n1,n2) from
a normal distributions N(z1|1,1) and N(z3|1,1), and calculated the mean value
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and standard deviation of the intrinsic estimators as well as both the coverage
probability and the expected length of the intrinsic 0.95-credible intervals. The
results are summarized in Table 3.2.

This table provides that the intrinsic statistic appears to be consistently closer
to the true value of the parameter, the frequentist coverage of reference p-credible
regions is indeed approximately equal to p for all sample sizes and the expected
length decrease according to the increase of sample sizes.

4. Concluding Remarks

The reference-intrinsic approach described provides a powerful alternative to
point and interval estimation and sharp hypothesis testing, with a clear interpre-
tation in terms of information units. This study considers the reference-intrinsic
approach for the difference between two normal means with unknown common
variances. In future we will derive the Bayesian reference criterion, the intrinsic
estimator and the credible region which corresponds to the intrinsic discrepancy
loss and the reference prior in two different variances case, and show the possible
extension of reference-intrinsic analysis in more complex setup.
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