• Title/Summary/Keyword: bayesian analysis

Search Result 975, Processing Time 0.031 seconds

Derivation and Uncertainty Analysis of Rating Curve Using Hierarchical Bayesian Model (Hierarchical Bayesian 방법을 이용한 수위-유량 관계 곡선 유도 및 불확실성 분석)

  • Kwon, Hyun-Han;Moon, Young-Il;Choi, Byung-Kyu;Kim, Seok-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1211-1214
    • /
    • 2008
  • 정확한 유량산정은 수자원 연구에서 기초가 되는 자료를 생산한다는 관점에서 홍수 및 가뭄관리에서 매우 중요한 부분이라 할 수 있다. 국내에서 유량측정의 정확성을 높이고자 진보된 계측기의 개발 및 분석 방법에 관한 연구가 꾸준히 진행되고 있다. 일반적으로 유량을 추정하기 위해서 특정단면에서의 수위를 측정하여 이를 수위-유량 관계곡선을 통해서 유량으로 환산하게 된다. 즉 수위-유량 관계를 측정한 후 이를 회귀분석 방법으로 내삽 및 외삽을 실시하여 유량을 추정하게 된다. 그러나 수위-유량 관계곡선에서 저수위와 고수위를 하나의 곡선식으로 하게 되는 경우 정도가 낮아지게 되므로 많은 경우에 있어서 저수위, 고수위를 각각의 곡선으로 구하여 사용하고 있다. 이러한 경우 정량적으로 변곡점을 구하기보다는 경험적으로 저수위와 고수위를 구분하고 있으며, 수위-유량 관계를 회귀식에 의해서 추정하게 되므로 이에 대한 불확실성 또한 정량화할 필요가 있다. 이러한 관점에서 본 연구에서는 불확실성 분석과 함께, 저수위-고수위를 정량적으로 구분할 수 있는 Hierarchical Bayesian 방법을 도입하여 수위-유량곡선식을 유도하고자 한다.

  • PDF

Bayesian Spatiotemporal Modeling in Epidemiology: Hepatitis A Incidence Data in Korea (역학분야에서의 베이지안 공간시간 모델링: 한국 A형 간염 자료)

  • Choi, Jungsoon
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.933-945
    • /
    • 2014
  • Bayesian spatiotemporal analysis is of considerable interest to epidemiological applications because health data is collected over space-time with complicated dependency structures. A basic concept in spatiotemporal modeling is introduced in this paper to analyze space-time disease data. The paper reviews a range of Bayesian spatiotemporal models and analyzes Hepatitis A data in Korea.

Bayesian Testing for the Equality of Two Lognormal Populations with the fractional Bayes factor (부분 베이즈요인을 이용한 로그정규분포의 상등에 관한 베이지안검정)

  • Moon, Kyoung-Ae;Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.51-59
    • /
    • 2001
  • We propose the Bayesian testing for the equality of two Lognormal population means. Specially we use the fractional Bayesian factors suggested by O'Hagan (1995) based on the noninformative priors for the parameters. In order to investigate the usefulness of the proposed Bayesian testing procedures, we compare it with classical tests via both real data analysis and simulations.

  • PDF

Bayesian Analysis for Neural Network Models

  • Chung, Younshik;Jung, Jinhyouk;Kim, Chansoo
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.155-166
    • /
    • 2002
  • Neural networks have been studied as a popular tool for classification and they are very flexible. Also, they are used for many applications of pattern classification and pattern recognition. This paper focuses on Bayesian approach to feed-forward neural networks with single hidden layer of units with logistic activation. In this model, we are interested in deciding the number of nodes of neural network model with p input units, one hidden layer with m hidden nodes and one output unit in Bayesian setup for fixed m. Here, we use the latent variable into the prior of the coefficient regression, and we introduce the 'sequential step' which is based on the idea of the data augmentation by Tanner and Wong(1787). The MCMC method(Gibbs sampler and Metropolish algorithm) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data.

Bayesian test for the differences of survival functions in multiple groups

  • Kim, Gwangsu
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.2
    • /
    • pp.115-127
    • /
    • 2017
  • This paper proposes a Bayesian test for the equivalence of survival functions in multiple groups. Proposed Bayesian test use the model of Cox's regression with time-varying coefficients. B-spline expansions are used for the time-varying coefficients, and the proposed test use only the partial likelihood, which provides easier computations. Various simulations of the proposed test and typical tests such as log-rank and Fleming and Harrington tests were conducted. This result shows that the proposed test is consistent as data size increase. Specifically, the power of the proposed test is high despite the existence of crossing hazards. The proposed test is based on a Bayesian approach, which is more flexible when used in multiple tests. The proposed test can therefore perform various tests simultaneously. Real data analysis of Larynx Cancer Data was conducted to assess applicability.

Safety Analysis using bayesian approach (베이지안 기법을 이용한 안전사고 예측기법)

  • Yang, Hee-Joong
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.5
    • /
    • pp.1-5
    • /
    • 2007
  • We construct the procedure to predict safety accidents following Bayesian approach. We make a model that can utilize the data to predict other levels of accidents. An event tree model which is a frequently used graphical tool in describing accident initiation and escalation to more severe accident is transformed into an influence diagram model. Prior distributions for accident occurrence rate and probabilities to escalating to more severe accidents are assumed and likelihood of number of accidents in a given period of time is assessed. And then posterior distributions are obtained based on observed data. We also points out the advantages of the bayesian approach that estimates the whole distribution of accident rate over the classical point estimation.

Bayesian Analysis of Software Reliability Growth Model with Negative Binomial Information (음이항분포 정보를 가진 베이지안 소프트웨어 신뢰도 성장모형에 관한 연구)

  • Kim, Hui-Cheol;Park, Jong-Gu;Lee, Byeong-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.852-861
    • /
    • 2000
  • Software reliability growth models are used in testing stages of software development to model the error content and time intervals betwewn software failures. In this paper, using priors for the number of fault with the negative binomial distribution nd the error rate with gamma distribution, Bayesian inference and model selection method for Jelinski-Moranda and Goel-Okumoto and Schick-Wolverton models in software reliability. For model selection, we explored the sum of the relative error, Braun statistic and median variation. In Bayesian computation process, we could avoid the multiple integration by the use of Gibbs sampling, which is a kind of Markov Chain Monte Carolo method to compute the posterior distribution. Using simulated data, Bayesian inference and model selection is studied.

  • PDF

T&E Reliability Analysis of Guided Weapons using Bayesian (베이지안 방법론 기반의 유도무기 시험평가 신뢰도 분석)

  • Kim, MoonKi;Kang, SeokJoong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1750-1758
    • /
    • 2015
  • This paper provides Bayesian methodology to estimate the reliability for guided weapons which are not continuously operating. The posterior distribution of subsystems and components becomes the next prior distribution. By analyzing the results of the sub-systems and components presented a method for estimating the reliability of the entire guided weapons. Bayesian methodology using existing test data of subsystems may be used to reduce the sample sizes.

Bayesian Analysis for Multiple Change-point hazard Rate Models

  • Jeong, Kwangmo
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.801-812
    • /
    • 1999
  • Change-point hazard rate models arise for example in applying "burn-in" techniques to screen defective items and in studing times until undesirable side effects occur in clinical trials. Sometimes in screening defectives it might be sensible to model two stages of burn-in. In a clinical trial there might be an initial hazard rate for a side effect which after a period of time changes to an intermediate hazard rate before settling into a long term hazard rate. In this paper we consider the multiple change points hazard rate model. The classical approach's asymptotics can be poor for the small to all moderate sample sizes often encountered in practice. We propose a Bayesian approach avoiding asymptotics to provide more reliable inference conditional only upon the data actually observed. The Bayesian models can be fitted using simulation methods. Model comparison is made using recently developed Bayesian model selection criteria. The above methodology is applied to a generated data and to a generated data and the Lawless(1982) failure times of electrical insulation.

  • PDF

Uncertainty Analysis of Stage-Discharge Curve Using Bayesian and Bootstrap Method (Bayesian과 Bootstrap 방법을 이용한 수위-유량 관계곡선의 불확실성 분석)

  • Kwon, Hyung Soo;Kim, Yon Soo;Kim, Ci Young;Kim, Sam Eun;Kim, Hung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.452-452
    • /
    • 2015
  • 수문학 분야에서 하천유량은 중요한 요소이므로 신뢰성을 바탕으로 지속적이고 정확한 관측이 필요하다. 일반적으로 수위나 강우량의 경우 지속적이고, 자동적인 측정으로 비교적 정확한 관측이 가능하다. 하지만, 기술적인 한계와 경제적인 면에서 연속적인 유량측정이 어렵기 때문에 수위-유량 관계곡선을 이용하여 유량을 산정하고 있다. 수위-유량 관계를 통해 유량을 산정할 경우 계산방법과 분석과정에서 오차가 발생되고 산정된 유량의 오차로 이어지게 된다. 따라서, 신뢰성있는 유량 산정을 위해서는 수위-유량 관계곡선의 불확실성을 감소시키는 것이 중요하다. 본 연구에서는 Bayesian 회귀분석 및 Bootstrap 방법을 이용하여 수위-유량 관계 곡선식의 매개변수를 추정하였다. 또한 앞의 2가지 방법의 적용성을 평가하기 위해서 기존 방법인 최소자승법에 의한 매개변수 추정치 결과의 신뢰구간을 비교분석 하였다. 본 연구를 통해 다양한 통계학적 방법을 이용한 결과로부터 수위-유량 관계곡선의 불확실성을 감소시키는데 효과적인 방법을 찾고자 한다.

  • PDF