• Title/Summary/Keyword: battlefield of situation

Search Result 82, Processing Time 0.025 seconds

A Study on Construction Method of AI based Situation Analysis Dataset for Battlefield Awareness

  • Yukyung Shin;Soyeon Jin;Jongchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.37-53
    • /
    • 2023
  • The AI based intelligent command and control system can automatically analyzes the properties of intricate battlefield information and tactical data. In addition, commanders can receive situation analysis results and battlefield awareness through the system to support decision-making. It is necessary to build a battlefield situation analysis dataset similar to the actual battlefield situation for learning AI in order to provide decision-making support to commanders. In this paper, we explain the next step of the dataset construction method of the existing previous research, 'A Virtual Battlefield Situation Dataset Generation for Battlefield Analysis based on Artificial Intelligence'. We proposed a method to build the dataset required for the final battlefield situation analysis results to support the commander's decision-making and recognize the future battlefield. We developed 'Dataset Generator SW', a software tool to build a learning dataset for battlefield situation analysis, and used the SW tool to perform data labeling. The constructed dataset was input into the Siamese Network model. Then, the output results were inferred to verify the dataset construction method using a post-processing ranking algorithm.

A Virtual Battlefield Situation Dataset Generation for Battlefield Analysis based on Artificial Intelligence

  • Cho, Eunji;Jin, Soyeon;Shin, Yukyung;Lee, Woosin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.6
    • /
    • pp.33-42
    • /
    • 2022
  • In the existing intelligent command control system study, the analysis results of the commander's battlefield situation questions are provided from knowledge-based situation data. Analysis reporters write these results in various expressions of natural language. However, it is important to analyze situations about information and intelligence according to context. Analyzing the battlefield situation using artificial intelligence is necessary. We propose a virtual dataset generation method based on battlefield simulation scenarios in order to provide a dataset necessary for the battlefield situation analysis based on artificial intelligence. Dataset is generated after identifying battlefield knowledge elements in scenarios. When a candidate hypothesis is created, a unit hypothesis is automatically created. By combining unit hypotheses, similar identification hypothesis combinations are generated. An aggregation hypothesis is generated by grouping candidate hypotheses. Dataset generator SW implementation demonstrates that the proposed method can be generated the virtual battlefield situation dataset.

Battlefield Ontology for Communication Unit Mission (통신부대 임무수행을 위한 전장온톨로지)

  • Lee, Yujin;Lee, Kyong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.667-672
    • /
    • 2020
  • Defense M&S (Modeling&Simulation) is a tool that creates a virtual battle situation similar to the real world, measuring and evaluating the effects of war or combat elements. However, it is very challenging to consider all the possible outcomes on the battlefield. To solve this problem, we propose a battlefield ontology, which conceptualizes the data of battlefield situation with tactical considerations. The proposed battlefield ontology is evaluated based on various communication posts in war game scenarios. The battlefield ontology is expected to assist the process of quick and accurate command decisions in convoluted battlefield situations.

Research on Cyber IPB Visualization Method based on BGP Archive Data for Cyber Situation Awareness

  • Youn, Jaepil;Oh, Haengrok;Kang, Jiwon;Shin, Dongkyoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.749-766
    • /
    • 2021
  • Cyber powers around the world are conducting cyber information-gathering activities in cyberspace, a global domain within the Internet-based information environment. Accordingly, it is imperative to obtain the latest information through the cyber intelligence preparation of the battlefield (IPB) process to prepare for future cyber operations. Research utilizing the cyber battlefield visualization method for effective cyber IPB and situation awareness aims to minimize uncertainty in the cyber battlefield and enable command control and determination by commanders. This paper designed architecture by classifying cyberspace into a physical, logical network layer and cyber persona layer to visualize the cyber battlefield using BGP archive data, which is comprised of BGP connection information data of routers around the world. To implement the architecture, BGP archive data was analyzed and pre-processed, and cyberspace was implemented in the form of a Di-Graph. Information products that can be obtained through visualization were classified for each layer of the cyberspace, and a visualization method was proposed for performing cyber IPB. Through this, we analyzed actual North Korea's BGP and OSINT data to implement North Korea's cyber battlefield centered on the Internet network in the form of a prototype. In the future, we will implement a prototype architecture based on Elastic Stack.

Research on functional area-specific technologies application of future C4I system for efficient battlefield visualization (미래 지휘통제체계의 효율적 전장 가시화를 위한 기능 영역별 첨단기술 적용방안)

  • Sangjun Park;Jungho Kang;Yongjoon Lee;Jeewon Kim
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.109-119
    • /
    • 2023
  • C4I system is an integrated battlefield information system that automates the five elements of command, control, communications, computers, and information to efficiently manage the battlefield. C4I systems play an important role in collecting and analyzing enemy positions, situations, and operational results to ensure that all services have the same picture in real time and optimize command decisions and mission orders. However, the current C4I has limitations whenever a new weapon system is introduced, as it only provides battlefield visualization in a single area focusing on the battlefield situation for each military service. In a future battlefield that expands not only to land, sea, and air domains but also to cyber and space domains, improved command and control decisions will be possible if organic data from various weapon systems is gathered to quickly visualize the battlefield situation desired by the user. In this study, the visualization technology applicable to the future C4I system is divided into map area, situation map area, and display area. The technological implementation of this future C4I system is based on various data and communication means such as 5G networks, and is expected to enable hyper-connected battlefield visualization that utilizes a variety of high-quality information to enable realistic and efficient battlefield situation awareness.

Recommendation Model for Battlefield Analysis based on Siamese Network

  • Geewon, Suh;Yukyung, Shin;Soyeon, Jin;Woosin, Lee;Jongchul, Ahn;Changho, Suh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a training method of a recommendation learning model that analyzes the battlefield situation and recommends a suitable hypothesis for the current situation. The proposed learning model uses the preference determined by comparing the two hypotheses as a label data to learn which hypothesis best analyzes the current battlefield situation. Our model is based on Siamese neural network architecture which uses the same weights on two different input vectors. The model takes two hypotheses as an input, and learns the priority between two hypotheses while sharing the same weights in the twin network. In addition, a score is given to each hypothesis through the proposed post-processing ranking algorithm, and hypotheses with a high score can be recommended to the commander in charge.

A Study on Building Knowledge Base for Intelligent Battlefield Awareness Service

  • Jo, Se-Hyeon;Kim, Hack-Jun;Jin, So-Yeon;Lee, Woo-Sin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.11-17
    • /
    • 2020
  • In this paper, we propose a method to build a knowledge base based on natural language processing for intelligent battlefield awareness service. The current command and control system manages and utilizes the collected battlefield information and tactical data at a basic level such as registration, storage, and sharing, and information fusion and situation analysis by an analyst is performed. This is an analyst's temporal constraints and cognitive limitations, and generally only one interpretation is drawn, and biased thinking can be reflected. Therefore, it is essential to aware the battlefield situation of the command and control system and to establish the intellignet decision support system. To do this, it is necessary to build a knowledge base specialized in the command and control system and develop intelligent battlefield awareness services based on it. In this paper, among the entity names suggested in the exobrain corpus, which is the private data, the top 250 types of meaningful names were applied and the weapon system entity type was additionally identified to properly represent battlefield information. Based on this, we proposed a way to build a battlefield-aware knowledge base through mention extraction, cross-reference resolution, and relationship extraction.

Transformer-Based MUM-T Situation Awareness: Agent Status Prediction (트랜스포머 기반 MUM-T 상황인식 기술: 에이전트 상태 예측)

  • Jaeuk Baek;Sungwoo Jun;Kwang-Yong Kim;Chang-Eun Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.436-443
    • /
    • 2023
  • With the advancement of robot intelligence, the concept of man and unmanned teaming (MUM-T) has garnered considerable attention in military research. In this paper, we present a transformer-based architecture for predicting the health status of agents, with the help of multi-head attention mechanism to effectively capture the dynamic interaction between friendly and enemy forces. To this end, we first introduce a framework for generating a dataset of battlefield situations. These situations are simulated on a virtual simulator, allowing for a wide range of scenarios without any restrictions on the number of agents, their missions, or their actions. Then, we define the crucial elements for identifying the battlefield, with a specific emphasis on agents' status. The battlefield data is fed into the transformer architecture, with classification headers on top of the transformer encoding layers to categorize health status of agent. We conduct ablation tests to assess the significance of various factors in determining agents' health status in battlefield scenarios. We conduct 3-Fold corss validation and the experimental results demonstrate that our model achieves a prediction accuracy of over 98%. In addition, the performance of our model are compared with that of other models such as convolutional neural network (CNN) and multi layer perceptron (MLP), and the results establish the superiority of our model.

A Study on Automatic Discovery and Summarization Method of Battlefield Situation Related Documents using Natural Language Processing and Collaborative Filtering (자연어 처리 및 협업 필터링 기반의 전장상황 관련 문서 자동탐색 및 요약 기법연구)

  • Kunyoung Kim;Jeongbin Lee;Mye Sohn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.127-135
    • /
    • 2023
  • With the development of information and communication technology, the amount of information produced and shared in the battlefield and stored and managed in the system dramatically increased. This means that the amount of information which cansupport situational awareness and decision making of the commanders has increased, but on the other hand, it is also a factor that hinders rapid decision making by increasing the information overload on the commanders. To overcome this limitation, this study proposes a method to automatically search, select, and summarize documents that can help the commanders to understand the battlefield situation reports that he or she received. First, named entities are discovered from the battlefield situation report using a named entity recognition method. Second, the documents related to each named entity are discovered. Third, a language model and collaborative filtering are used to select the documents. At this time, the language model is used to calculate the similarity between the received report and the discovered documents, and collaborative filtering is used to reflect the commander's document reading history. Finally, sentences containing each named entity are selected from the documents and sorted. The experiment was carried out using academic papers since their characteristics are similar to military documents, and the validity of the proposed method was verified.

A Study on Data Recording and Play Method between Tactical Situations to Ensure Data Integrity with Data Link Processor Based on Multiple Data Links (다중데이터링크 기반에서 데이터링크 처리기와의 데이터 무결성 보장을 위한 전술상황전시기 간 데이터 기록 및 재생 방법 연구)

  • Lee, Hyunju;Jung, Eunmi;Lee, Sungwoo;Yeom, Jaegeol;Kim, Sangjun;Park, Jihyeon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.13-25
    • /
    • 2017
  • Recently, the high performance of tactical situation display console and tactical data links are used to integrate the operational situations in accordance with information age and NCW (Network Centric Warfare). The tendency to maximize the efficiency of task execution has been developed by sharing information and the state of the battle quickly through complex and diverse information exchange. Tactical data link is a communication system that shares the platform with core components of weapons systems and battlefield situation between the command and control systems to perform a Network Centric Warfare and provides a wide range of tactical data required for decision-making and implementation.It provides the tactical information such as tactical information such as operational information, the identification of the peer, and the target location in real time or near real time in the battlefield situation, and it is operated for the exchange of mass tactical information between the intellectuals by providing common situation recognition and cooperation with joint operations. In this study, still image management, audio file management, tactical screen recording and playback using the storage and playback, NITF (National Imagery Transmission Format) message received from the displayer integrates the tactical situation in three dimensions according to multiple data link operation to suggest ways to ensure data integrity between the data link processor during the entire operation time.