• Title/Summary/Keyword: basicity

Search Result 196, Processing Time 0.026 seconds

Preparation of PAC for Water Treatment Chemicals Using Waste Aluminum Dross (알루미늄 폐드로스로부터 수처리응집제용 염화알루미늄 제조)

  • Park, Hyung-Kyu;Choi, Young-Yoon;Eom, Hyoung-Choon;Bae, Dong-Su
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.52-56
    • /
    • 2006
  • Waste aluminum dross was leached with hydrochloric acid to prepare PAC, poly aluminium chloride, used as water treatment chemicals. Metallic aluminum remained in the waste aluminum dross was dissolved into the hydrochloric acid solution. The solution could be used as PAC after adjusting the required alumina concentration and the basicity. Comparing to the conventional method far preparation of PAC using aluminum hydroxide, material cost could be saved in this method. Also, there is an additional merit in view of recycling of the waste aluminum dross by reducing the amount of waste dross to be landfilled.

Optimum Coagulation of Water Treatment Plant using On-line Floc Monitoring System (정수장 응집제주입 최적화를 위한 플럭 모니터링)

  • Hwang, Hwando;Lim, Sangho;Sung, Kyujong;Han, Youngjin;Kim, Youngbeom;Kwak, Jongwoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.397-406
    • /
    • 2009
  • This study was conducted to monitor the floc sizes forming in the mixing zone in the water treatment plant. The dosing amount of poly aluminium chloride(PAC) was determined by particle dispersion analyzer(iPDA) in the lab and field scale test. During a field test period, PAC coagulant was used and the raw water was taken from Nakdong river. PAC wad diluted to activate the coagulant, leading to bring the more homogeneous dispersion in the shorter time. To monitor the floc sizes, the unit of floc size index(FSI) was used. With increasing of raw water turbidity, FSI value was increased. Also, the increased dosing amount of PAC brought the increased FSI and with overdosing of coagulant was in turn decreased. When the PAC was fed into the raw water after dilution in a field scale test, the width of FSI was narrower compared with the feeding of the mother liquor of PAC, implying that the formed flocs are denser and more uniform sizes. The width of FSI in average was varied on depending on the basicity of coagulant. Also, dF value, fractal dimension was evalued with the different coagulants, showing from 2.01 to 2.03. On-line floc monitor was effective for the optimal dosing in the drinking water plant.

Relationship Between pH and Temperature of Electroless Nickel Plating Solution

  • Nguyen, Van Phuong;Kim, Dong-Hyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.33.1-33.1
    • /
    • 2018
  • pH is expressed mathematically as $pH=-{\log}[H^+]$, is a measure of the hydrogen ion concentration, [$H^+$] to specify the acidity or basicity of an aqueous solution. The pH scale usually ranges from 0 to 14. Every aqueous solution can be measured to determine its pH value. The pH values below 7.0 express the acidity, above 7.0 are alkalinity and pH 7.0 is a neutral solution. The solution pH can be determined by indicator or by measurement using pH sensor, which measuring the voltage generated between a glass electrode and a reference electrode according to the Nernst Equation. The pH value of solutions depends on the temperature and the activity of contained ions. In nickel electroless plating process, the controlled pH value in some limited ranges are extremely important to achieve optimal deposition rate, phosphorus content as well as solution stability. Basically, nickel electroless plating solution contains of $Ni^{2+}ions$, reducing agent, buffer and complexing agents. The plating processes are normally carried out at $82-92^{\circ}C$. However, the change of its pH values with temperatures does not follow any rule. Thus, the purpose of study is to understand the relationship between pH and temperature of some based solutions and electroless nickel plating solutions. The change of pH with changing temperatures is explained by view of the thermal dynamic and the practical measurements.

  • PDF

Kinetics and Mechanism of Azidolysis of Y-Substituted Phenyl Benzoates

  • Um, Ik-Hwan;Kim, Eun-Hee;Han, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.580-584
    • /
    • 2008
  • Second-order rate constants (kN) have been measured spectrophotometrically for reactions of Y-substituted phenyl benzoates (1a-h) with azide ion (N3) in 80 mol % H2O/20 mol % DMSO at 25.0 0.1 oC. The Brnsted-type plot for the azidolysis exhibits a downward curvature, i.e., the slope (b lg) changes from 0.97 to 0.20 as the basicity of the leaving group decreases. The pKao (defined as the pKa at the center of the Brnsted curvature) is 4.8, which is practically identical to the pKa of the conjugate acid of N3 ion (4.73). Hammett plots correlated with s o and s constants exhibit highly scattered points for the azidolysis. On the contrary, the corresponding Yukawa-Tsuno plot results in an excellent linear correlation with r = 2.45 and r = 0.40, indicating that the leaving group departs in the rate-determining step. The curved Brnsted-type plot has been interpreted as a change in the rate-determining step in a stepwise mechanism. The microscopic rate constants (k1 and k2/k1 ratio) have been calculated for the azidolysis and found to be consistent with the proposed mechanism.

Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of ortho-Substituent on Reactivity and Mechanism

  • Um, Ik-Hwan;Akhtar, Kalsoom
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.772-776
    • /
    • 2008
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for reactions of 3,4-dintrophenyl 2-furoate (2) with a series of secondary alicyclic amines in 80 mol % $H_2O$/20 mol % dimethyl sulfoxide (DMSO) at 25.0 ${^{\circ}C}$. The Bronsted-type plot exhibits a downward curvature for the aminolysis of 2, which is similar to that reported for the corresponding reactions of 2,4-dintrophenyl 2-furoate (1). Substrate 2 is less reactive than 1 toward all the amines studied but the reactivity difference becomes smaller as the amine basicity increases. Dissection of the second-order rate constants into the microscopic rate constants has revealed that the reaction of 2 results in a smaller $k_2/k_{-1}$ ratio but slightly larger $k_1$ value than that of 1. Steric hindrance has been suggested to be responsible for the smaller $k_1$ value found for the reactions of 1, since the ortho-substituent of 1 would inhibit the attack of amines (i.e., the $k_1$ process).

Transesterification of Jatropha Oil over Ceria-Impregnated ZSM-5 for the Production of Bio-Diesel

  • Bhagiyalakshmi, Margandan;Vinoba, Mari;Grace, Andrews Nirmala
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3059-3064
    • /
    • 2013
  • In this study transesterification of Triglycerides (TG) from Jatropha curcas oil (JCO) with methanol for production of biodiesel was investigated over cerium impregnated ZSM-5 catalysts. NaZSM-5 was synthesized in an alkaline medium and impregnated with cerium oxide by wet method using cerium nitrate as a source for cerium. They were characterized by X-ray diffraction (XRD), Thermogravimeteric analysis (TGA), $CO_2$-temperature programmed desorption, and $N_2$ adsorption/desorption analysis. XRD analysis showed decrease in intensity of the patterns with the increase in the ceria loading but crystallization of ceria to larger size is an evident for 10 and 15% loading. The optimal yield of transesterification process was found to be 90% under the following conditions: oil to methanol molar ratio: 1:12; temperature: $60^{\circ}C$; time: 1 h; catalyst: 5 wt %. Here the yield of fatty acid methyl ester (FAME) was calculated through $^1H$ NMR analysis. The investigation on catalyst loading, temperature, time and reusability illustrated that these ceria impregnated NaZSM-5's were found to be selective, recyclable and could yield biodiesel at low temperature with low methanol to oil ratio due to the presence of both Lewis and Bronsted basicity. Hence, from the above study it is concluded that ceria impregnated ZSM-5 could be recognized as a potential catalysts for biodiesel production in industrial processes.

Characteristic of Al(III) Hydrosis Species at Rapid Mixing Condition (급속흔화조건에서 AI(III) 가수분해종의 분포특성)

  • Jung, Chul-Woo;Son, Jung-Gi;Shon, In-Shik;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.128-136
    • /
    • 2004
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by different Al(III) coagulants. When an Al(III) salt is added to water, monomers, polymers, or solid precipitates may form. Different Al(III) coagulants (alum and PACl) show to have different Al species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved Al(III) (monomer and polymer) increases, but for PACl, precipitates of $Al(OH)_{3(s)}$. increases rapidly. Also, for alum, higher mixing speed favoured Al(III) polymers formation over precipitates of $Al(OH)_{3(s)}$ but for PACl, higher mixing speed formed more precipitates of $Al(OH)_{3(s)}$. At A/D and sweep condition, both $Al(OH)_{3(s)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

A Study on Polymerization of Oxocane High Explosives

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.4
    • /
    • pp.266-272
    • /
    • 2014
  • Oxocane high explosives substituted to explosive group such as azide (-CH2N3), nitrate (-CH2ONO2), and hydrazine (-CH2N2H3) are investigated theoretically the acid catalyzed reaction using the semiempirical MINDO/3, MNDO and AM1 methods to use as the guidelines of high explosives. The nucleophilicity and basicity of oxocane high explosives can be explained by the value of negative charge on oxygen atom of oxocane and the reactivity in propagation step can be represented by the value of positive charge on carbon atom and low electrophile LUMO energy. It was known that carbenium ion was favorable due to the stable energy (11.745~25.461 Kcal/mol) between oxonium ion and carbenium ion in the process of cyclic oxonium ion of oxocane high explosives being converted to open carbenium ion in oxocane high explosives. The value of concentration of cyclic oxonium ion and open carbenium ion in equilibrium status was found to be a major determinant of mechanism, it was expected to react faster in the prepolymer propagation step in SN1 mechanism than in that of SN2.

Interaction of Gallium Bromide with Hydrogen Bromide and Methyl Bromide in Nitrobenzene and in 1,2,4-Trichlorobenzene (니트로 벤젠 溶液 및 1,2,4-트리클로로 벤젠 溶液內에서의 브롬化갤륨과 브롬化水素 또는 브롬化 메칠과의 相互作用)

  • Choi, Sang-Up
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.77-83
    • /
    • 1962
  • The solubilities of hydrogen bromide and methyl bromide in nitrobenzene and in 1,2,4-trichlorobenzene have been measured in the presence and absence of gallium bromide. When gallium bromide does not exist in the system, the solubilities of HBr and MeBr in nitrobenzene are greater than in 1,2,4-trichlorobenzene, indicating the greater basicity of nitrobenzene than 1,2,4-trichlorobenzene. When there exists gallium bromide in the system, the addition compounds, GaBr3·HBr and GaBr3·CH3Br, have been found to exist in solution. The addition compound of GaBr3·HBr is stable in nitrobenzene but unstable in 1,2,4-trichlorobenzene. On the other hand the addition compound of $GaBr_3{\cdot}CH_3Br$ is unstable in both solvents. All of these unstable addition compounds dissociate into components to large extents according to one of the following equilibria or both: $$GaBr_3{\cdot}RBr{\leftrightarrows}GaBr_3+RBr\;GaBr_3{\cdot}RBr{\leftrightarrows}1}2\;Ga_2Br_6+RBr$.$ where R denotes either hydrogen atom or methyl group.

  • PDF

Fast and Easy Drying Method for the Preparation of Activated [18F]Fluoride Using Polymer Cartridge

  • Seo, Jai-Woong;Lee, Byoung-Se;Lee, Sang-Ju;Oh, Seung-Jun;Chi, Dae-Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.71-76
    • /
    • 2011
  • An efficient nucleophilic [$^{18}F$]fluorination has been studied to reduce byproducts and preparation time. Instead of conventional aqueous solution of $K_2CO_3-K_{222}$, several organic solution containing inert organic salts were used to release [$^{18}F$]fluoride ion and anion bases captured in the polymer cartridge, concluding that methanol solution is the best choice. Comparing to azeotropic drying process, one min was sufficient to remove methanol completely, resulting in about 10% radioactivity saving by reducing drying time. The polymer cartridge, Chromafix$^{(R)}$ (PS-$HCO_3$) was pretreated with several anion bases to displace pre-loaded bicarbonate base. Phosphate bases showed better results than carbonate bases in terms of lower basicity. tert-Butanol solvent used as a reaction media played another critical role in nucleophilic [18F]fluorination by suppressing eliminated side product. Consequent [$^{18}F$]fluorination under the present condition afforded fast preparation of reaction solution and high radiochemical yields (98% radio-TLC, 84% RCY) with 94% of precursor remained.