• Title/Summary/Keyword: basic polynomial

Search Result 161, Processing Time 0.026 seconds

Simultaneous Unwrapping Phase and Error Recovery from Inhomogeneity (SUPER) for Quantitative Susceptibility Mapping of the Human Brain

  • Yang, Young-Joong;Yoon, Jong-Hyun;Baek, Hyun-Man;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.37-49
    • /
    • 2018
  • Purpose: The effect of global inhomogeneity on quantitative susceptibility mapping (QSM) was investigated. A technique referred to as Simultaneous Unwrapping Phase with Error Recovery from inhomogeneity (SUPER) is suggested as a preprocessing to QSM to remove global field inhomogeneity-induced phase by polynomial fitting. Materials and Methods: The effect of global inhomogeneity on QSM was investigated by numerical simulations. Three types of global inhomogeneity were added to the tissue susceptibility phase, and the root mean square error (RMSE) in the susceptibility map was evaluated. In-vivo QSM imaging with volunteers was carried out for 3.0T and 7.0T MRI systems to demonstrate the efficacy of the proposed method. Results: The SUPER technique removed harmonic and non-harmonic global phases. Previously only the harmonic phase was removed by the background phase removal method. The global phase contained a non-harmonic phase due to various experimental and physiological causes, which degraded a susceptibility map. The RMSE in the susceptibility map increased under the influence of global inhomogeneity; while the error was consistent, irrespective of the global inhomogeneity, if the inhomogeneity was corrected by the SUPER technique. In-vivo QSM imaging with volunteers at 3.0T and 7.0T MRI systems showed better definition in small vascular structures and reduced fluctuation and non-uniformity in the frontal lobes, where field inhomogeneity was more severe. Conclusion: Correcting global inhomogeneity using the SUPER technique is an effective way to obtain an accurate susceptibility map on QSM method. Since the susceptibility variations are small quantities in the brain tissue, correction of the inhomogeneity is an essential element for obtaining an accurate QSM.

Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)

  • Hussein, A.;El-Tawil, M.;El-Tahan, W.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.129-152
    • /
    • 2008
  • This paper considers the solution of the stochastic differential equations (SDEs) with random operator and/or random excitation using the spectral SFEM. The random system parameters (involved in the operator) and the random excitations are modeled as second order stochastic processes defined only by their means and covariance functions. All random fields dealt with in this paper are continuous and do not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a spectral approximation for the stochastic response (solution) of the SDE is obtained based on the implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated random variables that enables us to compute the statistical moments of the solution vector. To check the validity of this method, two applications are introduced which are, randomly loaded simply supported reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced concrete beam with random bending rigidity, is presented to illustrate the method.

New Low-Power and Small-Area Reed-Solomon Decoder (새로운 저전력 및 저면적 리드-솔로몬 복호기)

  • Baek, Jae-Hyun;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.96-103
    • /
    • 2008
  • This paper proposes a new low-power and small-area Reed-Solomon decoder. The proposed Reed-Solomon decoder using a novel simplified form of the modified Euclid's algorithm can support low-hardware complexity and low-Power consumption for Reed-Solomon decoding. The simplified modified Euclid's algorithm uses new initial conditions and polynomial computations to reduce hardware complexity, and thus, the implemented architecture consisting of 3r basic cells has the lowest hardware complexity compared with existing modified Euclid's and Berlekamp-Massey architectures. The Reed-Solomon decoder has been synthesized using the $0.18{\mu}m$ Samsung standard cell library and operates at 370MHz and its data rate supports up to 2.9Gbps. For the (255, 239, 8) RS code, the gate counts of the simplified modified Euclid's architecture and the whole decoder excluding FIFO memory are only 20,166 and 40,136, respectively. Therefore, the proposed decoder can reduce the total gate count at least 5% compared with the conventional DCME decoder.

Basic Research on Structural Optimum Design of G/T 250ton Class Double-ended Car-Ferry Ship (G/T 250톤급 양방향 차도선의 차량갑판 구조 최적설계에 관한 기초연구)

  • Kang, Byoung-Mo;Oh, Young-Cheol;Seo, Kwang-Cheol;Bae, Dong-Gyun;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.729-736
    • /
    • 2015
  • In this paper, It was performed to optimize for the deck's structural design of a double ended car ferry ship respect to Goal-Driven Optimization (GDO). It was examined for the strength and deformation of the deck and determined to save economic cost the optimal point. The deck thickness based on the Design of Experiments (DOE) and response surface method was increased to 110%. and can improve the deck's strength and stiffness. By performing the regression analysis respect to the result, we propose the optimal regression model formula as a third degree polynomial regression models. The coefficient of determination $R^2$ was about 0.98 and reliability could be obtained.

Parallelized Architecture of Serial Finite Field Multipliers for Fast Computation (유한체 상에서 고속 연산을 위한 직렬 곱셈기의 병렬화 구조)

  • Cho, Yong-Suk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2007
  • Finite field multipliers are the basic building blocks in many applications such as error-control coding, cryptography and digital signal processing. Hence, the design of efficient dedicated finite field multiplier architectures can lead to dramatic improvement on the overall system performance. In this paper, a new bit serial structure for a multiplier with low latency in Galois field is presented. To speed up multiplication processing, we divide the product polynomial into several parts and then process them in parallel. The proposed multiplier operates standard basis of $GF(2^m)$ and is faster than bit serial ones but with lower area complexity than bit parallel ones. The most significant feature of the proposed architecture is that a trade-off between hardware complexity and delay time can be achieved.

A Study on the Learning-Teaching Plan about a Essential Concept of Decimal Fraction Based on Decimal Positional Notation (위치적 십진기수법을 본질로 하여 조직한 소수 개념 지도 방안 연구)

  • Kang, Heung-Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.1
    • /
    • pp.199-219
    • /
    • 2011
  • In this thesis, we designed a experimental learning-teaching plan of 'decimal fraction concept' at the 4-th grade level. We rest our plan on two basic premises. One is the fact that a essential concept of decimal fraction is 'polynomial of which indeterminate is 10', and another is the fact that the origin of decimal fraction is successive measurement activities which improving accuracy through decimal partition of measuring unit. The main features of our experimental learning-teaching plan is as follows. Firstly, students can experience a operation which generate decimal unit system through decimal partitioning of measuring unit. Secondly, the decimal fraction expansion will be initially introduced and the complete representation of decimal fraction according to positional notation will follow. Thirdly, such various interpretations of decimal fraction as 3.751m, 3m+7dm+5cm+1mm, $(3+\frac{7}{10}+\frac{5}{100}+\frac{1}{1000})m$ and $\frac{3751}{1000}m$ will be handled. Fourthly, decimal fraction will not be introduced with 'unit decimal fraction' such as 0.1, 0.01, 0.001, ${\cdots}$ but with 'natural number+decimal fraction' such as 2.345. Fifthly, we arranged a numeration activity ruled by random unit system previous to formal representation ruled by decimal positional notation. A experimental learning-teaching plan which presented in this thesis must be examined through teaching experiment. It is necessary to successive research for this task.

  • PDF

Opto-mechanical Analysis for Primary Mirror of Earth Observation Camera of the MIRIS (MIRIS EOC 주경의 광기계 해석)

  • Park, Kwi-Jong;Moon, Bong-Kon;Park, Sung-Jun;Park, Young-Sik;Lee, Dae-Hee;Ree, Chang-Hee;Nah, Jak-Young;Jeong, Woog-Seob;Pyo, Jeong-Hyun;Lee, Duk-Hang;Nam, Uk-Won;Rhee, Seung-Wu;Yang, Sun-Choel;Han, Won-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.262-268
    • /
    • 2011
  • MIRIS(Multi-purpose Infra-Red Imaging System) is the main payload of the STSAT-3(Korea Science and Technology Satellite. 3), which is being developed by KASI(Korea Astronomy & Space Institute). EOC(Earth Observation Camera), which is one of two infrared cameras in MIRIS, is the camera for observing infrared rays from the Earth in the range of $3{\sim}5{\mu}m$. The optical system of the EOC is a Cassegrain prescription with aspheric primary and secondary mirrors, and its aperture is 100mm. A ring type flexure supports the EOC primary mirror with pre-loading in order to withstand expected load due to the shock and vibration from the launcher. Here we attempt to use the same mechanism by which a retainer supports the lens. Through opto-mechanical analysis it was confirmed that the EOC primary mirror is effectively supported.

Biotic and Abiotic Factors Affecting Homoharringtonine Contents of Cephalotaxus koreana Nakai (개비자나무의 homoharringtonine 함량에 영향을 미치는 생물 및 무생물적 환경인자)

  • Jung, Myung-Suk;Hyun, Jung-Oh;Lee, Uk;Baik, Eul-Sun
    • Korean Journal of Plant Resources
    • /
    • v.23 no.2
    • /
    • pp.172-178
    • /
    • 2010
  • This study was carried out to investigate abiotic and biotic environmental factors affecting homoharringtonine (HHT) contents of Cephalotaxus koreana, whereby, to provide basic information of high value-added industry production of HHT as a promising anti-cancer agent. For correlation between abiotic environmental factors (soil moisture, soil pH, habitat density and temperature) and HHT contents, the contents were highly correlated with soil moisture (0.77) and soil pH (-0.68). For multiple regression analysis of relationship between abiotic environmental factors (soil moisture and soil pH) and HHT contents, soil moisture appeared to be strongly affecting the contents relatively due to being significant at only its regression coefficient ($26.48^{***}$). For the effect of biotic environmental factors (damage index) affecting HHT contents, the contents was quadratic with equation of $H=278.23+1242D-398.87D^2$, also, damage index had strong effect on the contents. Finally, for the result of the most influencing an environmental factor on HHT contents, both damage index and soil moisture were suitable in second polynomial regression, also, damage index ($R^2=0.73^{***}$) was turned out to be more influencing factor than soil moisture ($R^2=0.67^{**}$) on HHT contents relatively. Therefore, we predict that HHT contents in the trees of Cephalotaxus koreana is produced as a chemical defense mechanism triggered by a stress-related damage of fungi or insects.

Analysis of pneumatic braking component effects and characteristics of a diesel electric locomotive (디젤전기기관차의 공압제동 영향인자 및 특성 분석)

  • Choi, Don Bum;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.541-549
    • /
    • 2018
  • This paper deals with the braking dynamic behavior of diesel electric locomotive pulling domestic cargo and passenger vehicles. Friction coefficient, pneumatic pressure, and running resistance affecting the braking system were tested. For the friction coefficient, the Dynamo test was performed with reference to UIC 541-4. The results are analyzed by multivariate regression and the relationship between braking force and ititial velocity is presented. The pneumatic pressure were classified into service braking and emergency braking. In order to reflect the characteristics of the brake valve and piping, the pressure rising over time was measured in the vehicle. In order to reflect the external force acting on the vehicle, we carried out the test of EN 14067-4 and presented the second order polynomial formula on a running resistance. The running resistance test results were compared with other countries. The dynamic behavior of a diesel electric locomotive running on a straight flat track based on vehicle resources, friction coefficient, braking pressure, and running resistance is simulated using the time integration presented in EN 14531-1. The simulation results were compared and verified with the vehicle braking test results. The results of this study can be used to analyze the dynamic braking behavior of a train. Also, it is expected that various parameters affecting braking in vehicle design can be analyzed and used as basic data for braking performance improvement.

Providing the combined models for groundwater changes using common indicators in GIS (GIS 공통 지표를 활용한 지하수 변화 통합 모델 제공)

  • Samaneh, Hamta;Seo, You Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.245-255
    • /
    • 2022
  • Evaluating the qualitative the qualitative process of water resources by using various indicators, as one of the most prevalent methods for optimal managing of water bodies, is necessary for having one regular plan for protection of water quality. In this study, zoning maps were developed on a yearly basis by collecting and reviewing the process, validating, and performing statistical tests on qualitative parameters҆ data of the Iranian aquifers from 1995 to 2020 using Geographic Information System (GIS), and based on Inverse Distance Weighting (IDW), Radial Basic Function (RBF), and Global Polynomial Interpolation (GPI) methods and Kriging and Co-Kriging techniques in three types including simple, ordinary, and universal. Then, minimum uncertainty and zoning error in addition to proximity for ASE and RMSE amount, was selected as the optimum model. Afterwards, the selected model was zoned by using Scholar and Wilcox. General evaluation of groundwater situation of Iran, revealed that 59.70 and 39.86% of the resources are classified into the class of unsuitable for agricultural and drinking purposes, respectively indicating the crisis of groundwater quality in Iran. Finally, for validating the extracted results, spatial changes in water quality were evaluated using the Groundwater Quality Index (GWQI), indicating high sensitivity of aquifers to small quantitative changes in water level in addition to severe shortage of groundwater reserves in Iran.