• Title/Summary/Keyword: basic friction angle

Search Result 34, Processing Time 0.028 seconds

Improvement of tip analysis model for drilled shafts in cohesionless soils

  • Chen, Yit-Jin;Wu, Hao-Wei;Marcos, Maria Cecilia M.;Lin, Shiu-Shin
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.447-462
    • /
    • 2013
  • An analysis model for predicting the tip bearing capacity of drilled shafts in cohesionless soils is improved in this study. The evaluation is based on large amounts of drilled shaft load test data. Assessment on the analysis model reveals a greater variation in two coefficients, namely, the overburden bearing capacity factor ($N_q$) and the bearing capacity modifier for soil rigidity (${\zeta}_{qr}$). These factors are modified from the back analysis of drilled shaft load test results. Different effective shaft depths and interpreted capacities at various loading stages (i.e., low, middle, and high) are adopted for the back calculation. Results show that the modified bearing capacity coefficients maintain their basic relationship with soil effective friction angle ($\bar{\phi}$), in which the $N_q$ increases and ${\zeta}_{qr}$ decreases as $\bar{\phi}$ increases. The suggested effective shaft depth is limited to 15B (B = shaft diameter) for the evaluation of effective overburden pressure. Specific design recommendations for the tip bearing capacity analysis of drilled shafts in cohesionless soils are given for engineering practice.

Fundamental Study on Geotechnical Properties of Sand-Bentonite Mixtures (모래-벤토나이트 혼합물의 지반 공학적특성에 관한 기초 연구)

  • 권무남;유택항
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.99-110
    • /
    • 1997
  • The study was conducted in order to investigate the basic geotechnical properties of sand-bentonite mixtures with the various bentonite contents. The results obtained are as follows : 1. Optimum moisture content of sand-bentonite mixtures was approximately 17.10~18.52% corresponding to the maximum dry density of 1.58~1 .64gf/$cm^3$. As the bentonite contents and curing peroid increased, both the maximum dry density and optimum moisture content of sand-bentonite mixtures increased. 2. The unconfined compressive strength of sand-bentonite mixtures increased as the increase of bentonite content, but it did not change along the curing period. 3. The sand-bentonite mixtures ruptured at 8~15% of the axial strain and the maxi-mum shearing stress was about O.7Okgf/$cm^2$. 4. According to the increase of bentonite content, the cohesion intercept and internal friction of the sand-bentonite mixtures increased slightly in the shear test, while the cohesion intercept increased largely, and the internal friction angle decreased largely in the triaxial test. 5. Both the initial void ratio and swelling of the sand-bentonite mixtures were very low with respect to the consolidation pressure increase. 6. The swelling and shrinkage of sand-bentonite mixtures increased slightly according to the increment of bentonite content.

  • PDF

Comparison of the physical characteristics according to the varieties of perilla for the development of a high-quality, high-efficiency cleaner and stone separator

  • Park, Jong Ryul;Park, Heo Man;Park, Hye Rin;Yang, Gye Hoon;Lee, Jung Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.717-726
    • /
    • 2020
  • The physical characteristics of the major varieties of perilla were analyzed to use as basic data for the design of a high-quality, high-efficiency perilla cleaner and stone separator. Because the size, thousand-grain weight, angle of repose, angle of friction, bulk density and terminal velocity of perilla have significant differences according to the perilla variety, the different of characteristics by variety should be considered for performance improvement of a perilla cleaner and stone separator. Therefore the cleaner and stone separator using a sieve could be improved by the application of a detachable sieve or by using equipment such as a 2 - 3 stage sieve and regulating the slope. Moreover, because differences in the terminal velocity occur due to the differences in the size and thousand-grain weight according to the perilla variety, a blower with an adjustable fan speed was considered for the design of the improved cleaner. Additionally, it was shown that the length of perilla has the greatest correlation based on a comparison of the coefficients of the other characteristics. Accordingly, the length of perilla could be used as a major factor for the fine adjustment and parts replacement of the device. These results can be used as basic data for a high-quality, high-efficiency perilla cleaner and stone separator. In the future, the development of the machine and follow-up studies based on the basic data are needed to determine the optimized operating conditions and mechanism of action.

Evaluation of Geotechnical Engineering Properties and Use of Mixed Soil Containing Waste Stone Sludge (폐석분 혼합토의 지반공학적 특성 및 활용에 관한 연구)

  • Kim, Chan-Kee;Jung, Soo-Hoon;Cho, Won-Bum
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • This study is conducted to investigate the possibility of the utilization of the mixed soil formed by mixing stone sludge, bentonite, and residual soil as a soil sealant sustaining both stability and capacity in the barrier system. A series of tests were performed on the mixed soils to evaluate basic properties such as compaction, compressive strength, permeability and CBR of these materials. The results indicates that as the stone sludge content increases, the optimum moisture content increases a little, but the maximum dry density decreases. The compressive strength and CBR decrease, and the cohesion, internal friction angle and expansion ratio increase. When the bentonite content increases, the maximum dry density decreases, and the optimum moisture content, compressive strength and cohesion, internal friction angle, CBR and expansion ratio increase. Mixing ratio of the mixed soil contained with the stone dust more than 10% and the bentonite less than 10% satisfies the standard of the permeability coefficient as the soil sealant.

  • PDF

Measurement of Engineering Properties Necessary to the Design of Drumstick (Moringa oleifera L.) Pod Sheller

  • Oloyede, Dolapo O.;Aviara, Ndubisi A.;Shittu, Sarafadeen K.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.201-211
    • /
    • 2015
  • Purpose: Designing equipment for processing, sorting, and other post-harvest operations of agricultural products requires information about their physical properties. This study was conducted to investigate some of the mechanical and physical properties of Moringa oleifera L. pods and seeds. Methods: Properties such as the length, width, thickness, bulk density, porosity, mass, static coefficient of friction, and angle of repose were determined as a function of moisture content. Statistical data and force-deformation curves obtained at each loading orientation and moisture level were analyzed for bioyield point, bioyield strength, yield force, rupture point, and rupture strength using a testrometric machine. Result: The basic dimensions (length, width, and thickness) of moringa pods and seeds were found to increase linearly from 311.15 to 371.45 mm, 22.79 to 31.22 mm, and 22.24 to 29.88 mm, respectively, in the moisture range of 12 to 49.5% d.b. The coefficient of friction for both pods and seeds increased linearly with an increase in moisture content on all the surfaces used. The highest value was recorded on mild steel, with 0.581 for pods and 0.3533 for seeds, and the lowest on glass for pods, with a value of 0.501, and of 0.2933 for seeds on galvanized steel. The bioyield and rupture forces, bioyield and rupture energies, and deformation of the pods decreased with an increase in moisture content to a minimum value, then increased with further decrease within the moisture content range, while the yield force increased to a maximum value and then decreased as the moisture content increased. Conclusion: These results will help to determine the most suitable conditions for processing, transporting, and storing moringa pods, and to provide relevant data useful in designing handling and processing equipment for the crop.

An easy-to-use design procedure for multipass plate heat exchangers based on the performance plots (성능선도에 의한 다통로 판형열교환기의 간이설계법)

  • 유호선;이근휘;방보청
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.250-261
    • /
    • 1999
  • Based on a set of performance plots relating the design variables to the imposed conditions, an easy-to-use and versatile design procedure for chevron-type multipass plate heat exchangers is developed. In order for the present procedure to cover multipass with unequal passes and non-unity ratio of heat capacity rate, each stream number of transfer unit is adopted as the basic design variable instead of the exchanger number of transfer unit. It is found that there exists a unique relation between the stream and exchanger number of transfer units regardless of the chevron angle and the plate length. In addition, for a given value of the pressure drop the heat transfer area per unit mass flow rate can be expressed in terms of the stream number of transfer unit only. These two relationships in the form of simple plots constitute the framework of design. The sample results in comparison with the available data indicate that the present procedure includes the previous ones as a subset, and that every design method is affected essentially by the selection of specific correlations for the heat transfer coefficient and the friction factor.

  • PDF

Manufacturing process of micro-nano structure for super hydrophobic surface (초발수 표면을 만들기 위한 마이크로-나노 몰드 제작 공정)

  • Lim, Dong-Wook;Park, Kyu-Bag;Park, Jung-Rae;Ko, Kang-Ho;Lee, Jeong-woo;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.57-64
    • /
    • 2021
  • In recent materials industry, researches on the technology to manufacture super hydrophobic surface by effectively controlling the wettability of solid surface are expanding. Research on the fabrication of super hydrophobic surface has been studied not only for basic research but also for self-cleaning, anti-icing, anti-friction, flow resistance reduction in construction, textile, communication, military and aviation fields. A super hydrophobic surface is defined as a surface having a water droplet contact angle of 150 ° or more. The contact angle is determined by the surface energy and is influenced not only by the chemical properties of the surface but also by the rough structure. In this paper, maskless lithography using DMD, electro etching, anodizing and hot embossing are used to make the polymer resin PMMA surface super hydrophobic. In the fabrication of microstructure, DMDs are limited by the spacing of microstructure due to the structural limitations of the mirrors. In order to overcome this, maskless lithography using a transfer mechanism was used in this paper. In this paper, a super hydrophobic surface with micro and nano composite structure was fabricated. And the wettability characteristics of the micro pattern surface were analyzed.

The Study of Numerical Analysis on Failure Behavior of Reinforced Soil Wall (보강토 옹벽의 파괴거동에 대한 수치해석적 연구)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.9-16
    • /
    • 2008
  • This paper is concerned with the numerical evaluation of the failure behavior of reinforced soil walls based on the elasto-plastic theory. At first, the basic analysis on the failure behavior of reinforced soil walls are discussed. Parametric study of the major factors influencing the failure behavior is conducted by FEM. The objectives are to identify and evaluate the major facts influencing the failure mode of reinforced soil walls. The results of the parametric study on the failure behavior due to soil friction angle, reinforcement type, and reinforecement length are analysed.

  • PDF

Characteristics comparison according to operating mode of dynamically tuned gyroscope in the electro-optical tracking system (EOTS에서의 동조자이노스코프의 동작모드에 따른 특성비교)

  • Im, Sung-Woon;Ma, Jin-Suk;Kwon, Woo-Hyen
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.311-317
    • /
    • 1997
  • DTG(dynamically tuned gyroscope) is a sensor detecting disturbance in angle velocity control loop of EOTS(electro optical tracking system), which is used for the stabilization of gimbal. DTG is classified into rate mode or rate integrated mode according to operating mode. In this paper, basic principles and characteristics of DTG, depending on to operating mode, are compared and the model of rate integrated mode DTG is proposed. Also, the validity of the presented model is verified by computer simulations and experiments.

  • PDF

Reliability-based Optimization for Rock Slopes

  • Lee, Myung-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.3-34
    • /
    • 1998
  • The stability condition of rock slopes is greatly affected by the geometry and strength parameters of discontinuities in the rock masses. Rock slopes Involving movement of rock blocks on discontinuities are failed by one or combination of the three basic failure modes-plane, wedge, and toppling. In rock mechanics, practically all the parameters such as the joint set characteristics, the rock strength properties, and the loading conditions are always subject to a degree of uncertainty. Therefore, a reasonable assessment of the rock slope stability has to include the excavation of the multi-failure modes, the consideration of uncertainties of discontinuity characteristics, and the decision on stabilization measures with favorable cost conditions. This study was performed to provide a new numerical model of the deterministic analysis, reliability analysis, and reliability-based optimization for rock slope stability. The sensitivity analysis was carried out to verify proposed method and developed program; the parameters needed for sensitivity analysis are design variables, the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and rock slope geometry properties. The design variables to be optimized by the reliability-based optimization include the cutting angle, the support pressure, and the slope direction. The variability in orientations and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a greatly influenced on the rock slope stability. The stability of rock slopes considering three basic failure modes is more influenced by the selection of slope direction than any other design variables. When either plane or wedge failure is dominant, the support system is more useful than the excavation as a stabilization method. However, the excavation method is more suitable when toppling failure is dominant. The case study shows that the developed reliability-based optimization model can reasonably assess the stability of rock slopes and reduce the construction cost.

  • PDF