• Title/Summary/Keyword: base station

Search Result 1,733, Processing Time 0.033 seconds

A Handover Technique in a Dual-mode Base Station (이중모드 기지국에서의 핸드오버 기법)

  • Jeong Tae-Eui;Shin Yeon-Seung;Ju Sang-Don;Song Byung-Kwon
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.177-184
    • /
    • 2006
  • A handover is a technology that enables data transmission and receipt seamlessly while a mobile station moves from the current base station to another base station. The handover is basically classified into two types; a horizontal handover which changes a radio link only without changing a network link, and a vertical handover which changes both in heterogeneous networks. In this paper, we propose a vertical handover protocol in a dual base station which supports both of W-CDMA and WiBro networks based on SDR (Software Defined Radio), verify the rightness using a state transition diagram and a Petri-net, and evaluate the performance of the proposed protocol using NS-2 simulator.

Implementation of the Base Station Controller in IMT-2000 System (IMT-2000 시스템의 제어국 기능 구현)

  • Lee, Dong-Myeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8S
    • /
    • pp.2748-2756
    • /
    • 2000
  • IMT-2000 시스템(International Mobile Telecommunications-2000 system)은 음성, 화상, 및 데이터 서비스등 멀티미디어 서비스 제공을 목표로 기존의 디지털 이동통신 시스템에 적용된 기본 기술에 새로운 시스템 개념과 각종 응용기술 및 망 기술이 접목된 차세대 이동통신 시스템이다. 본 논문에서는 동기방식의 IMT-2000 시스템의 핵심 시스템인 제어국(BSC : Base Station Controller)의 무선 트래픽 및 신호접속기능, 이동호 제어기능 및 운용보전기능의 설계 및 구현에 대하여 논하고자 한다. 또한, IMT-2000 시스템의 호처리 절차 및 핸드오프 처리절차를 제시한다. 주로 BSC의 서브시스템인 AIS(ATM Interconnection Subsystem), BIS(BTS Interface Subsystem), SDS(Selector Distribution Subsystem), CSS(Control & Signal Subsystem) 및 BEMS(Base station Element Management Subsystem)의 구조와 기능, 그리고 MS(Mobile Station),BTS(Base Station Transceiver Subsystem), BSC 및 MSC(Mobile Switching Center)간의 호처리 기능, 절차(핸드오프 기능 포함)를 설계, 구현하였다.

  • PDF

EIRP Measurements of WCDMA Base Station Using Pilot Channel in Line-of-Sight Environments (가시선 환경에서 Pilot 채널을 이용한 WCDMA 기지국의 EIRP 측정)

  • Jang, Byung-Jun;Moon, Sung-Won;Lim, Jae-Bong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.545-551
    • /
    • 2011
  • In this paper, we described a measurement method of an EIRP(Effective Isotropic Radiated Power) of a WCDMA base station using a pilot channel in line-of-sight environments. Especially we measured it in real base station environments in order to apply this method to domestic base station inspection test. Estimated EIRP results from measured value is -2 dB lower than theoretical values, which is calculated by the data of transmit antenna. The deviation of -2 dB is verified as a polarization mismatch between the base station antenna and a receiver antenna, and it can be calibrated. Therefore, we verified that our measurement method could be an effective tool to measure an EIRP in WCDMA base station inspection test.

An Efficient Clustering Protocol with Mode Selection (모드 선택을 이용한 효율적 클러스터링 프로토콜)

  • Aries, Kusdaryono;Lee, Young Han;Lee, Kyoung Oh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.925-928
    • /
    • 2010
  • Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way since the energy is limited. The clustering algorithm is a technique used to reduce energy consumption. It can improve the scalability and lifetime of wireless sensor network. In this paper, we introduce a clustering protocol with mode selection (CPMS) for wireless sensor networks. Our scheme improves the performance of BCDCP (Base Station Controlled Dynamic Clustering Protocol) and BIDRP (Base Station Initiated Dynamic Routing Protocol) routing protocol. In CPMS, the base station constructs clusters and makes the head node with highest residual energy send data to base station. Furthermore, we can save the energy of head nodes using modes selection method. The simulation results show that CPMS achieves longer lifetime and more data messages transmissions than current important clustering protocol in wireless sensor networks.

Implementation of MPI-based WiMAX Base Station for SDR System (SDR 시스템을 위한 MPI 기반 WiMAX 기지국의 구현)

  • Ahn, Chi Young;Kim, Hyo Han;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.59-67
    • /
    • 2013
  • Compared to the conventional Hardware-oriented base stations, Software Defined Radio (SDR)-based base station provides various advantages especially in flexibility and expandability. It enables the multimode capability required in 4th-generation (4G) environment which aims at a convergence network of various kinds of communication standards. However, since a single base station processes all data required in various multiple waveforms, the SDR base station faces a problem of data processing speed. In this paper, we propose a new concept of SDR base station system which adopts a parallel processing technology of clustering environment. We implemented a WiMAX system with SDR concept which adopts the Message Passing Interface (MPI) technology which enables the speed-up operations. In order to maximize the efficiency of parallel processing in signal processing, we analyze how the algorithm at each of modules is related to data to be processed. Through the implemented system, we show a drastic improvement in operation time due to parallel processing using the proposed MPI technology. In addition, we demonstrate a feasibility of SDR system for 4G or even beyond-4G as well.

Intelligent Robust Base-Station Research in Harsh Outdoor Wilderness Environments for Wildsense

  • Ahn, Junho;Mysore, Akshay;Zybko, Kati;Krumm, Caroline;Lee, Dohyeon;Kim, Dahyeon;Han, Richard;Mishra, Shivakant;Hobbs, Thompson
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.814-836
    • /
    • 2021
  • Wildlife ecologists and biologists recapture deer to collect tracking data from deer collars or wait for a drop-off of a deer collar construction that is automatically detached and disconnected. The research teams need to manage a base camp with medical trailers, helicopters, and airplanes to capture deer or wait for several months until the deer collar drops off of the deer's neck. We propose an intelligent robust base-station research with a low-cost and time saving method to obtain recording sensor data from their collars to a listener node, and readings are obtained without opening the weatherproof deer collar. We successfully designed the and implemented a robust base station system for automatically collecting data of the collars and listener motes in harsh wilderness environments. Intelligent solutions were also analyzed for improved data collections and pattern predictions with drone-based detection and tracking algorithms.

Implementation of Cryptographic Hash Function for CDMA System Authentication (CDMA 시스템 인증을 위한 암호 해쉬 함수의 구현)

  • Hwang Jae-Jin;Chae Hyen-Seok;Choi Myung-Ryul
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.297-300
    • /
    • 2004
  • In cellular communication, subscriber authentication is an essential technique. The mobile station should operate in conjunction with the base station to authenticate the identity. In CDMA system, authentication is the process by which information is exchanged between a mobile station and base station for the purpose of confirming the mobile station. A successful authentication process means that the mobile station and base station process identical sets of shared secret data(SSD). SSD can be generated by authentication algorithms. The cryptographic hash function is a practical way of authentication algorithms. In this paper, we propose and implement MD5 and SHA-1 with modified structure.

  • PDF

Base Station Location Optimization in Mobile Communication System (이동 통신 시스템에서 기지국 위치의 최적화)

  • 변건식;이성신;장은영;오정근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.499-505
    • /
    • 2003
  • In the design of mobile wireless communication system, base station location is one of the most important parameters. Designing base station location, the cost must be minimized by combining various, complex parameters. We can solve this problem by combining optimization algorithm, such as Simulated Annealing, Tabu Search, Genetic Algorithm, Random Walk Algorithm that have been used extensively fur global optimization. This paper shows the 4 kinds of algorithm to be applied to the optimization of base station location for communication system and then compares, analyzes the results and shows optimization process of algorithm.

Dynamic Handoff Control Methods Considering the Characteristics of Mobile Station (이동국의 특성을 고려한 동적 핸드오프)

  • 김재훈;오창석
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.1
    • /
    • pp.104-112
    • /
    • 2002
  • Dynamic Handoff Control Scheme (DHCS), which is propose d in this paper, suggests the method to request handoff at the optimal time. To accomplish this, DHCS measures the speed of the mobile station and sets the pilot strength for handoff request. When the pilot strength of the current base station is bigg or than the pilot strength for handoff request, which means the pilot strength of the current base station is big enough so the possibility of the call to be disconnected is low, DHCS doesn't request for the handoff even though the pilot strength of the adjacent base station is bigger than the pilot strength of the curent base station. DHCS guarantees the QoS (Quality of Service) by processing the handoff calls prior to new calls at the base station and providing continuous service for the mobile station by setting the priorities for the calls according to the queue waiting time transmitted from the mobile stations.

  • PDF

A Priority Packet Forwarding for TCP Performance Improvement in Mobile W based Networks with Packet Buffering (모바일 IP 패킷 버퍼링 방식에서 TCP 성능향상을 위한 패킷 포워딩 우선권 보장 방안)

  • Hur, Kyeong;Roh, Young-Sup;Eom, Doo-Seop;Tchah, Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8B
    • /
    • pp.661-673
    • /
    • 2003
  • To prevent performance degradation of TCP due to packet losses in the smooth handoff by the route optimization extension of Mobile IP protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers those packets dropped during handoff by forwarding buffered packets at the old base station to the mobile user. But, when the mobile user moves to a congested base station in a new foreign subnetwork, those buffered packets forwarded by the old base station are dropped and TCP transmission performance of a mobile user in the congested base station degrades due to increased congestion by those forwarded burst packets. In this paper, considering the general case that a mobile user moves to a congested base station, we propose a Priority Packet Forwarding to improve TCP performance in mobile networks. In the proposed scheme, without modification to Mobile IP protocol, the old base station marks a buffered packet as a priority packet during handoff. And priority queue at the new congested base station schedules the priority packet firstly. Simulation results show that proposed Priority Packet Forwarding can improve TCP transmission performance more than Implicit Priority Packet Forwarding and RED (Random Early Detection) schemes.