• Title/Summary/Keyword: barnyard millet grains

Search Result 8, Processing Time 0.031 seconds

Anti-inflammatory Effect of Flavonoids Kaempferol and Biochanin A-enriched Extract of Barnyard Millet (Echinochloa crus-galli var. frumentacea) Grains in LPS-stimulated RAW264.7 Cells (마우스 대식 세포주 RAW264.7에 있어서 LPS처리에 의해 유도되는 염증반응에 대한 식용피(Echinochloa crus-galli var. frumentacea)의 저해효과)

  • Lee, Ji Young;Jun, Do Youn;Yoon, Young Ho;Ko, Jee Youn;Woo, Koan Sik;Woo, Mi Hee;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1157-1167
    • /
    • 2014
  • In order to compare the anti-inflammatory effects of five selected cereal grains-proso millet, hwanggeumchal sorghum, foxtail millet, barnyard millet, and adlay-the inhibitory activities of 80% ethanol (EtOH) extracts obtained from the individual grains on lipopolysaccharide (LPS)-induced nitric oxide (NO) generation were investigated in RAW264.7 cells. The EtOH extract of barnyard millet (Echinochloa crus-galli var. frumentacea) grains exhibited more potent anti-inflammatory activity than that of the other grains. When the EtOH extract of barnyard millet grains was sequentially fractionated with n-hexane, methylene chloride (MC), ethyl acetate (EtOAc), and n-butanol, the majority of the anti-inflammatory activity was detected in the MC fraction, followed by the EtOAc fraction. Pretreatment with the MC fraction caused downregulation of the expression levels of iNOS- and COX-2-specific transcripts and proteins, as well as proinflammatory cytokine gene transcripts (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) in LPS-stimulated RAW264.7 cells. Additionally, the MC fraction could suppress not only the LPS-induced nuclear translocation of cytosolic NF-kB, but also the LPS-induced activation of MAPKs, such as ERK, JNK, and p38MAPK. Further analysis of the MC fraction by HPLC identified kaempferol, biochanin A, and formononetin as the major phenolic components. Both kaempferol and biochanin A, but not formononetin, could exert anti-inflammatory effect at the same concentrations as those of the MC fraction. Consequently, these results indicate that kaempferol and biochanin A are among the most effective anti-inflammatory phenolic components in barnyard millet grains. This finding suggests that barnyard millet grains and the MC extract enriched in kaempferol and biochanin A could be beneficial functional food sources that have an anti-inflammatory effect.

Comparative Evaluation of Antioxidant Activities of Ethanol Extracts and Their Solvent Fractions Obtained from Selected Miscellaneous Cereal Grains (잡곡 유래 에탄올 추출물 및 이의 유기용매 분획들의 항산화 활성 비교평가)

  • Park, Dong Hwa;Lee, Seung Tae;Jun, Do Youn;Lee, Ji Young;Woo, Mi Hee;Kim, Ki Young;Seo, Myung Chul;Ko, Jee Yeon;Woo, Koan Sik;Jung, Tae Wook;Kwak, Do Yeon;Nam, Min Hee;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.26-38
    • /
    • 2014
  • To examine the antioxidant activities of 11n selected miscellaneous cereal grains (proso millet, yellow glutinous proso millet, hwanggeumchal sorghum, glutinous sorghum, white glutinous sorghum, yellow glutinous foxtail millet, nonglutinous foxtail millet, green glutinous foxtail millet, golden foxtail millet, barnyard millet, and adlay), the free radical-scavenging activities of 80% ethanol extracts of the individual grains were investigated using 1,1-diphenyl-2-picryl-hydrazl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods. The ethanol extracts of hwanggeumchal sorghum, glutinous sorghum, and barnyard millet grains exhibited more potent free radical-scavenging activities as compared to the other grains. When these three ethanol extracts were sequentially fractionated with n-hexane, methylene chloride, ethyl acetate, and n-butanol, the majority of the antioxidant activities were detected in the ethyl acetate and butanol fractions in which phenolic ingredients were abundant. The ethyl acetate and butanol fractions of hwanggeumchal sorghum and the ethyl acetate fraction of glutinous sorghum showed higher antioxidant activity than that of ${\alpha}$-tocopherol. Both ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods demonstrated that these organic solvent fractions could inhibit lipid peroxidation. The ethyl acetate fractions from hwanggeumchal sorghum, glutinous sorghum, and barnyard millet grains could suppress tertiary-butyl hydroperoxide (TBHP)-induced apoptotic events, including sub-G1 peaks, ${\Delta}{\Psi}m$ loss, activation of caspase-9 and caspase-3, and cleavage of PARP and lamin B, in human HL-60 cells. These results show that the grains of hwanggeumchal sorghum (Sorghum bicolor L. Moench cv. Hwanggeumchalsusu), glutinous sorghum (Sorghum bicolor L. Moench cv. Chalsusu), and barnyard millet (Echinochloa esculenta) possess efficient antioxidant activity, which could protect cells from oxidative stress-mediated cytotoxicity.

Anti-diabetic Effects of Barnyard Millet Miryang 3 [Echinochloa esculenta (A. Braun)] Grains on Blood Glucose in C57BL/KsJ-db/db Mice (식용피 밀양3호[Echinochloa esculenta (A. Braun)] 에탄올 추출물의 당뇨모델 마우스에 대 한 항당뇨 활성)

  • Kwon, Gi Hyun;Jun, Do Youn;Lee, Ji Young;Park, Jueun;Woo, Mi Hee;Yoon, Young Ho;Ko, Jee Youn;Oh, In-Seok;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1265-1272
    • /
    • 2015
  • Barnyard millet Miryang 3 [Echinochloa esculenta (A. Braun)] grains have recently been acknowledged for beneficial health properties due to phenolic ingredients and dietary fiber. This study has been conducted on the anti-diabetic activity of barnyard millet Miryang 3 which shows the strongest anti-inflammatory activity among barnyard millet inhabiting in South Korea. When 80% ethanol (EtOH) extract of barnyard millet Miryang 3 grains were orally administered into db/db diabetic mice for 8 weeks (600 mg/kg/day), the glucose level in blood following fasting appeared to be improved compared to the control group. The results of glucose tolerance test and blood lipid profile assay were similar to those of the metformin-administered positive control group. In addition, the level of body weight increase (8.54±2.24) was lower than the level of metformin-administered group (10.36±3.15); however, there was no subtle difference with negative and positive control groups in terms of food efficiency rates. In addition, total cholesterol levels of the 80% EtOH extract-administered group (160.7±7.6) were significantly reduced compared to the diabetic control group (229.3±47.8) and metformin-administered group (176.0±25.6). Consequently, these results show that barnyard millet grains alleviates many of the diabetic symptoms in vivo non-insulin-dependent diabetes mellitus, and suggest that barnyard millet grains can be applicable in developing new functional food materials.

Quality Breeding Outcome and Outlook in Coarse Grain Crops (잡곡의 품질개량 육종 성과와 전망)

  • Choi Byung Han
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1998.09a
    • /
    • pp.22-34
    • /
    • 1998
  • Coarse grain crops including maize, sorghum, buckwheat, fox-tail millet, pearl millet, proso millet and barnyard millet have been used as health food, feed and industrial materials in Korea for a long time. Korean ancestors thought and treated them as the very important good crops for human health and the crops have served as a dish made with all the grains, particularly in January 15 of the lunar month in korea because the grains make the five viscera of heart, liver, spleen, lungs and kidneys and the six entrails of gall bladder, stomach, small and large intestines, the paunch, the bladder, and the bowels strong and build healthy body. Thus, the objectives of the paper were to review and summarize the results obtained from the quality breeding and functional researches worldwide on nutrition, utilization and medical action of the coarse grain crops. Maize grain, fresh ear and green fodder yields have increased since 1960s in Korea. Agronomic traits improvements also occurred for cold tolerance, disease and insect resistance, resistance to barrenness, resistance to loding, pollen production, grain and seed yields, and eating quality. For buckwheat, improved summer buckwheat varieties produced more rutin for vegetable and grain than autumn varieties in Korea

  • PDF

A Study on Chinese Noodles (중국(中國)의 면조문화연구(麵條文化硏究))

  • Shin, Kye-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.15 no.4
    • /
    • pp.307-312
    • /
    • 2000
  • The purpose of this study is to understand the Chinese noodles(mian tiao). Wheat seems to have been cultivated 3-4,000 years before according to the archaeological evidences from the neolithic sites. The five grains(rice, millet, beans, barley, barnyard millet) already appeared in the period prior to Chin dynasty and were used as whole grain, but it was not until Chun Chu Zhan Guo period that the introduction of the flouring method stimulated the cultivation of wheat. In Chin-Han period, when water power and animal force were put into usage to facilitate the mass production of wheat flour, 'Bing', a designation for all the food made of wheat first appeared in the literature, and it was this 'Bing' that had later developed into noodles. In Wei Chin Nan Bei Chao period, roasted 'Bing', namely 'Kao-Bing' made its first appearance, and in Tang period, various noodles were created with the increase of restaurants specialized in noodles. In Song dynasty, 'La-Mian', the noodles stretched and beat from noodle dough, was first introduced, and in Yuan period, invention of drying method made the appearance of dried noodles, 'Gua-Mian', possible, which was good for easy and long preservation. Qing dynasty developed the noodles with a variety of assorted ingredients. The Chinese noodles are classified by various standards such as main ingredients, cooking methods, kinds of sauce, secondary ingredients, shape, eating method, flavor, and look.

  • PDF

Pharmacologic Inhibition of Autophagy Sensitizes Human Acute Leukemia Jurkat T Cells to Acacetin-Induced Apoptosis

  • Lee, Ji Young;Jun, Do Youn;Kim, Ki Yun;Ha, Eun Ji;Woo, Mi Hee;Ko, Jee Youn;Yun, Young Ho;Oh, In-Seok;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.197-205
    • /
    • 2017
  • Exposure of Jurkat T cell clone (J/Neo cells) to acacetin (5,7-dihydroxy-4'-methoxyflavone), which is present in barnyard millet (Echinochloa esculenta (A. Braun)) grains, caused cytotoxicity, enhancement of apoptotic $sub-G_1$ rate, Bak activation, loss of mitochondrial membrane potential (${\Delta}{\Psi}m$), activation of caspase-9 and caspase-3, degradation of poly(ADP-ribose) polymerase, and FITC-Annexin V-stainable phosphatidylserine exposure on the external surface of the cytoplasmic membrane without accompanying necrosis. These apoptotic responses were abrogated in Jurkat T cell clone (J/Bcl-xL) overexpressing Bcl-xL. Under the same conditions, cellular autophagic responses, including suppression of the Akt-mTOR pathway and p62/SQSTM1 down-regulation, were commonly detected in J/Neo and J/Bcl-xL cells; however, formation of acridine orange-stainable acidic vascular organelles, LC3-I/II conversion, and Beclin-1 phosphorylation (Ser-15) were detected only in J/Neo cells. Correspondingly, concomitant treatment with the autophagy inhibitor (3-methyladenine or LY294002) appeared to enhance acacetin-induced apoptotic responses, such as Bak activation, ${\Delta}{\Psi}m$ loss, activation of caspase-9 and caspase-3, and apoptotic $sub-G_1$ accumulation. This indicated that acacetin could induce apoptosis and cytoprotective autophagy in Jurkat T cells simultaneously. Together, these results demonstrate that acacetin induces not only apoptotic cell death via activation of Bak, loss of ${\Delta}{\Psi}m$, and activation of the mitochondrial caspase cascade, but also cytoprotective autophagy resulting from suppression of the Akt-mTOR pathway. Furthermore, pharmacologic inhibition of the autophagy pathway augments the activation of Bak and resultant mitochondrial damage-mediated apoptosis in Jurkat T cells.

Kaempferol Activates G2-Checkpoint of the Cell Cycle Resulting in G2-Arrest and Mitochondria-Dependent Apoptosis in Human Acute Leukemia Jurkat T Cells

  • Kim, Ki Yun;Jang, Won Young;Lee, Ji Young;Jun, Do Youn;Ko, Jee Youn;Yun, Young Ho;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.287-294
    • /
    • 2016
  • The effect of kaempferol (3,5,7,4-tetrahydroxyflavone), a flavonoid compound that was identified in barnyard millet (Echinochloa crus-galli var. frumentacea) grains, on G2-checkpoint and apoptotic pathways was investigated in human acute leukemia Jurkat T cell clones stably transfected with an empty vector (J/Neo) or a Bcl-xL expression vector (J/Bcl-xL). Exposure of J/Neo cells to kaempeferol caused cytotoxicity and activation of the ATM/ATR-Chk1/Chk2 pathway, activating the phosphorylation of p53 (Ser-15), inhibitory phosphorylation of Cdc25C (Ser-216), and inactivation of cyclin-dependent kinase 1 (Cdk1), with resultant G2-arrest of the cell cycle. Under these conditions, apoptotic events, including upregulation of Bak and PUMA levels, Bak activation, mitochondrial membrane potential (Δψm) loss, activation of caspase-9, -8, and -3, anti-poly (ADP-ribose) polymerase (PARP) cleavage, and accumulation of apoptotic sub-G1 cells, were induced without accompanying necrosis. However, these apoptotic events, except for upregulation of Bak and PUMA levels, were completely abrogated in J/Bcl-xL cells overexpressing Bcl-xL, suggesting that the G2-arrest and the Bcl-xL-sensitive mitochondrial apoptotic events were induced, in parallel, as downstream events of the DNA-damage-mediated G2-checkpoint activation. Together these results demonstrate that kaempferol-mediated antitumor activity toward Jurkat T cells was attributable to G2-checkpoint activation, which caused not only G2-arrest of the cell cycle but also activating phosphorylation of p53 (Ser-15) and subsequent induction of mitochondria-dependent apoptotic events, including Bak and PUMA upregulation, Bak activation, Δψm loss, and caspase cascade activation.

Changes in Fatty Acid Composition of Grain after Milling (곡류 도정에 따른 지방산 조성 변화 연구)

  • Cho, Young-Sook;Kim, Yu-Na;Kim, Su-Yeonk;Kim, Jung-Bong;Kim, Heon-Woong;Kim, Se-Na;Kim, So-Young;Park, Hong-Ju;Kim, Jae-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.409-413
    • /
    • 2011
  • BACKGROUND: Cereals, especially rice is the staple food of oriental nations and because it is very important for Korean food, to determine the extent of nutrient losses due to milling, we analyzed the fatty acid using by GC-FID(Gas Chromatography-Flame Ionization Detector). Experimented rice cereals were rice, glutinous rice, Heuinchalssalbori, Seodunchalbori, Saessalbori, Keunalbori No.1, barnyard millet produced in Korea. METHODS AND RESULTS: After milling, the contents of fatty acids in the rice, glutinous rice, Heuinchalssalbori, and Seodunchalbori, Keunalbori No.1 rather decreased, but in the Saessalbori, and barnyard mille increased. Particularly, fatty acid content of the rice decreased from 24.8 mg/g to 6.4 mg/g, glutinous rice decreased from 29.4 mg/g to 11.7 mg/g after milling. There were also significant changes in the compositions of fatty acid among samples. Stearic acid ($C_{18:0}$) increased from 5% to 15%, but oleic acid ($C_{18:1}$) and linoleic acid ($C_{18:2}$) decreased in the rice after milling. CONCLUSION(s):In the brown rice, 11 different types of fatty acids were detected, and its highest content was found in grains. However, milled grain was observed only seven fatty acids in the case of rice. This result insisted that a portion of the lipid layer was significantly lost during the milling operation in rice.